login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231908
T(n,k)=Number of nXk 0..2 arrays with no element having a strict majority of its horizontal, diagonal and antidiagonal neighbors equal to itself plus one mod 3, with upper left element zero (rock paper and scissors drawn positions)
10
1, 1, 3, 3, 17, 9, 8, 137, 74, 27, 21, 948, 1740, 315, 81, 55, 6975, 31167, 22759, 1343, 243, 144, 50323, 614818, 1082472, 297099, 5734, 729, 377, 366170, 11900005, 57946241, 37368831, 3882566, 24495, 2187, 987, 2657785, 232002949, 3045772177
OFFSET
1,3
COMMENTS
Table starts
....1......1.........3.............8...............21...................55
....3.....17.......137...........948.............6975................50323
....9.....74......1740.........31167...........614818.............11900005
...27....315.....22759.......1082472.........57946241...........3045772177
...81...1343....297099......37368831.......5429359691.........773715251151
..243...5734...3882566....1291573433.....509273459716......196795864115357
..729..24495..50739125...44640322903...47773200503463....50062652312668838
.2187.104655.663117735.1542901809201.4481443113541663.12735271817562619233
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 3*a(n-1)
k=2: a(n) = 6*a(n-1) -8*a(n-2) +2*a(n-3) +3*a(n-4) -a(n-5) for n>6
k=3: [order 17] for n>18
k=4: [order 81] for n>82
Empirical for row n:
n=1: a(n) = 3*a(n-1) -a(n-2) for n>3
n=2: a(n) = 9*a(n-1) -5*a(n-2) -66*a(n-3) +78*a(n-4) +4*a(n-5) -16*a(n-6)
n=3: [order 37] for n>38
EXAMPLE
Some solutions for n=3 k=4
..0..0..2..1....0..0..0..1....0..2..0..1....0..2..2..1....0..0..0..0
..1..0..1..1....2..1..0..0....2..2..2..0....2..2..1..2....0..0..1..0
..0..2..0..0....1..2..2..1....2..0..0..2....2..0..0..1....1..1..0..2
CROSSREFS
Column 1 is A000244(n-1)
Column 2 is A231779
Row 1 is A001906(n-1)
Sequence in context: A127539 A342837 A278627 * A226610 A332840 A279172
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 15 2013
STATUS
approved