|
|
A231850
|
|
Number of n X 3 0..2 arrays with no element having a strict majority of its horizontal and antidiagonal neighbors equal to itself plus one mod 3, with upper left element zero (rock paper and scissors drawn positions).
|
|
1
|
|
|
3, 34, 656, 12404, 234336, 4426924, 83630516, 1579892344, 29846280396, 563836173564, 10651619780176, 201223350436284, 3801378343993156, 71813123491132504, 1356645994919661436, 25628858153744306924
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..210
|
|
FORMULA
|
Empirical: a(n) = 21*a(n-1) - 41*a(n-2) + 22*a(n-3) for n>4.
Empirical g.f.: x*(3 - 29*x + 65*x^2 - 44*x^3) / (1 - 21*x + 41*x^2 - 22*x^3). - Colin Barker, Oct 01 2018
|
|
EXAMPLE
|
Some solutions for n=5:
..0..0..1....0..0..1....0..0..1....0..0..2....0..0..2....0..0..0....0..0..0
..0..2..2....0..1..2....0..1..2....0..2..1....0..2..2....1..1..0....1..2..2
..0..2..2....0..2..0....0..2..1....0..1..1....2..0..1....0..2..2....0..2..2
..0..1..2....2..0..1....2..0..1....2..0..2....1..1..0....1..0..0....2..0..1
..0..0..1....1..2..2....2..2..2....2..2..0....1..0..0....1..0..0....0..2..2
|
|
CROSSREFS
|
Column 3 of A231855.
Sequence in context: A332679 A256512 A277391 * A109521 A274744 A222869
Adjacent sequences: A231847 A231848 A231849 * A231851 A231852 A231853
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin, Nov 14 2013
|
|
STATUS
|
approved
|
|
|
|