This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A231739 Integer areas of the Lucas Central triangles of integer-sided triangles. 1
 2775, 11100, 24975, 34125, 44400, 69375, 99900, 135975, 136500, 177600, 224775, 277500, 307125, 335775, 399600, 468975, 543900, 546000, 624375, 710400, 801975, 853125, 899100, 1001775, 1110000, 1223775, 1228500, 1343100, 1467975, 1598400, 1672125, 1734375 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Consider a reference triangle ABC and externally inscribe a square on the side BC. Now join the new vertices S_AB and S_AC of this square with the vertex A, marking the points of intersection Q_ABC and Q_ACB. Next, draw lines perpendicular to the side BC through each of Q_ABC and Q_ACB. These points cross the sides AB and AC at Q_AB and Q_AC, respectively, resulting in an inscribed square Q_ABC Q_ACB Q_AB Q_AC. The circumcircle through A, Q_AB, and Q_AC is then known as the Lucas A-circles (Panakis 1973, p. 458; Yiu and Hatzipolakis 2001), and repeating the process for other sides gives the corresponding B- and C-circles. The Lucas central triangle is the triangle L1 L2 L3 formed by the centers of the Lucas circles of a given reference triangle ABC. The Lucas central triangle has side lengths a' = 2*R*(a*b*c+b^2*R+c^2*R)*a/((a*c+2*b*R)*(a*b+2*c*R)); b' = 2*R*(a*b*c+a^2*R+c^2*R)*b/((b*c+2*a*R)*(a*b+2*c*R)); c' = 2*R*(a*b*c+a^2*R+b^2*R)*c/((b*c+2*a*R)*(a*c+2*b*R)). Its area is given by S' = a*b*c*R^2*sqrt(u)/v where: u=3*a^2*b^2*c^2+4*a*b*c*(a^2+b^2+c^2)*R+4*(a^2*b^2+a^2*c^2+b^2*c^2)*R^2 ; v=(b*c+2*a*R)*(a*c+2*b*R)*(a*b+2*c*R); R = a*b*c/ sqrt((a+b+c)*(b+c-a)*(c+a-b)*(a+b-c)) = a*b*c/(4*S) where R is the circumradius of the reference triangle ABC and S its area. Properties of this sequence: The side lengths of the Lucas central triangles are rational numbers, sometimes integers, for example a(n) = 136500,... The primitive Lucas central triangles are 2775, 34125,... The non-primitive triangles of areas 4*a(n),9*a(n),...,p^2*a(n),... are is the sequence. The following table gives the first values (S', S, a, b, c, a', b', c') where S' is the area of the Lucas central triangles, S is the area of the initial triangles ABC, a, b, c are the integer sides of ABC and a', b', c' are the sides of the Lucas central triangles. ------------------------------------------------------------------------ |   S'   |      S  |   a  |   b  |   c  |    a'    |    b'   |   c'    | ------------------------------------------------------------------------ |   2775 |    8214 |  111 |  148 |  185 |  975/14  |  580/7  |  185/2  | |  11100 |   32856 |  222 |  296 |  370 |  975/7   |  1160/7 |  185    | |  24975 |   73926 |  333 |  444 |  555 |  2925/14 |  1740/7 |  555/2  | |  34125 |  115248 |  490 |  490 |  588 |  545/2   |   545/2 |  300    | |  44400 |  131424 |  444 |  592 |  740 |  1950/7  |  2320/7 |  370    | |  69375 |  205350 |  555 |  740 |  925 |  4875/14 |  2900/7 |  925/2  | |  99900 |  295704 |  666 |  888 | 1110 |  2925/7  |  3480/7 |  555    | | 135975 |  402486 |  777 | 1036 | 1295 |   975/2  |   580   | 1295/2  | | 136500 |  460992 |  980 |  980 | 1176 |   545    |   545   |  600    | | 177600 |  525696 |  888 | 1184 | 1480 |  3900/7  |  4640/7 |  740    | | 224775 |  665334 |  999 | 1332 | 1665 |  8775/14 |  5220/7 | 1665/2  | | 277500 |  821400 | 1110 | 1480 | 1850 | 48755/7  |  5800/7 |  925    | | 307125 | 1037232 | 1470 | 1470 | 1764 |  1635/2  |  1635/2 |  900    | ..................................................................... LINKS P. Moses, Circles and Triangle Centers Associated with the Lucas Circles, Forum Geom. 5, 97-106, 2005. Wolfram MathWorld, Lucas Central Triangle Wolfram MathWorld, Lucas Circles P. Yiu and A. P. Hatzipolakis, The Lucas Circles of a Triangle, Amer. Math. Monthly 108, 444-446, 2001. EXAMPLE 2775 is in the sequence. We use two ways: First way: from the initial triangle (111, 148, 185) the formula in the comments gives directly the area of the Lucas central triangle: S' = a*b*c*R^2*sqrt(u)/v where: R = a*b*c/4S = a*b*c/(4*sqrt(s(s-a)(s-b)(s-c)) = 111*148*185/4*sqrt(222(222-111)(222-148)(222-185)) = 111*148*185/(4*8214) = 185/2 with S=8214. sqrt(u) = sqrt(3*a^2*b^2*c^2+4*a*b*c*(a^2+b^2+c^2)*R+4*(a^2*b^2+a^2*c^2+b^2*c^2)*R^2) = sqrt(154007727700225) = 12409985. v = (b*c+2*a*R)*(a*c+2*b*R)*(a*b+2*c*R) = 116291549487925 And S’ = 111*148*185*(185/2)^2*12409985/116291549487925 = 2775. Second way: by calculation of the sides a', b', c' and by using Heron's formula. With the formulas given in the link, we find a’ = 975/14; b’ = 580/7; c’ = 185/2. Now, we use Heron's formula with (a', b', c'). We find A' = sqrt(s1*(s1-a')*(s1-b')*(s1-c')) with: s1 =(a'+b'+c')/2 = (975/14 + 580/7 + 185/2)/2 = 245/2; We find S'= 2775. MATHEMATICA nn=2000; lst={}; Do[s =(a + b + c)/2; area2=s (s-a)(s-b)(s-c); If[area2>0, R = a*b*c /(4*Sqrt[area2]); u = a*b*c*R^2 * Sqrt[3*a^2*b^2*c^2 + 4*a*b*c*(a^2 + b^2 + c^2)*R + 4*(a^2*b^2 + a^2*c^2 + b^2*c^2)*R^2]; v = (b*c + 2*a*R)*(a*c + 2*b*R)*(a*b + 2*c*R); If[IntegerQ[u/v], AppendTo[lst, u/v]]], {a, nn}, {b, a}, {c, b}]; Union[lst] CROSSREFS Cf. A188158. Sequence in context: A249228 A154081 A099691 * A251200 A188415 A236125 Adjacent sequences:  A231736 A231737 A231738 * A231740 A231741 A231742 KEYWORD nonn AUTHOR Michel Lagneau, Nov 13 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 12:42 EDT 2017. Contains 292271 sequences.