login
A231691
Cardinalities of the symmetric operad of dotted red and white trees.
3
1, 6, 74, 1476, 41032, 1464672, 63865328, 3290120832, 195537380704, 13169097667584, 991181618539136, 82450282595311104, 7511417235983147008, 743790032122343820288, 79541198937597284060672, 9136079502141558495310848, 1121720442822518015112749056, 146607501639123412303738884096, 20322509742114322789584125210624, 2978025324234142178848508363882496
OFFSET
1,2
LINKS
F. Chapoton, F. Hivert, J.-C. Novelli, A set-operad of formal fractions and dendriform-like sub-operads, arXiv preprint arXiv:1307.0092 [math.CO], 2013.
FORMULA
E.g.f. A(x) satisfies -A(x) - g(-A(x)) = x where g is the E.g.f. of A052878. - Gheorghe Coserea, Jan 18 2017, edited by Robert Israel, Sep 27 2018
a(n) ~ sqrt((5 + 7*s + 3*s^2) / (7 + 13*s + 5*s^2)) * n^(n-1) / ((log((1+3*s+s^2)/(1+s))-s)^(n - 1/2) * exp(n)), where s = A060006 - 1 = -1 + (27/2 - 3*sqrt(69)/2)^(1/3)/3 + ((9 + sqrt(69))/2)^(1/3)/3^(2/3). - Vaclav Kotesovec, Apr 21 2020
EXAMPLE
A(x) = x + 6*x^2/2! + 74*x^3/3! + 1476*x^4/4! + 41032*x^5/5! + ...
MAPLE
S:= series(RootOf(y=-x-ln((1+x)/(1+3*x+x^2)), x), y, 21):
seq(coeff(S, y, n)*n!, n=1..21); # Robert Israel, Sep 27 2018
MATHEMATICA
terms = 20; (CoefficientList[InverseSeries[Log[x^2 + 3x + 1] - Log[1+x] - x + O[x]^(terms+1)], x]*Range[0, terms]!) // Rest (* Jean-François Alcover, Sep 16 2018, after Gheorghe Coserea *)
PROG
(PARI)
N=21; x = 'x + O('x^N); Vec(serlaplace(serreverse(log(x^2+3*x+1) - log(1+x) - x))) \\ Gheorghe Coserea, Jan 18 2017
CROSSREFS
Sequence in context: A057783 A317344 A357011 * A177561 A269334 A069852
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 14 2013
EXTENSIONS
Offset changed and more terms from Gheorghe Coserea, Jan 15 2017
STATUS
approved