login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{i=0..n} digsum_6(i), where digsum_6(i) = A053827(i).
5

%I #22 Dec 10 2021 05:57:04

%S 0,1,3,6,10,15,16,18,21,25,30,36,38,41,45,50,56,63,66,70,75,81,88,96,

%T 100,105,111,118,126,135,140,146,153,161,170,180,181,183,186,190,195,

%U 201,203,206,210,215,221,228,231,235,240,246,253,261,265,270,276,283,291,300,305,311,318,326,335,345,351,358,366,375,385,396,398,401,405,410,416,423,426,430

%N a(n) = Sum_{i=0..n} digsum_6(i), where digsum_6(i) = A053827(i).

%D Jean-Paul Allouche and Jeffrey Shallit, Automatic sequences, Cambridge University Press, 2003, p. 94.

%H Vincenzo Librandi, <a href="/A231672/b231672.txt">Table of n, a(n) for n = 0..1000</a>

%H Jean Coquet, <a href="https://doi.org/10.1016/0022-314X(86)90067-3">Power sums of digital sums</a>, J. Number Theory, Vol. 22, No. 2 (1986), pp. 161-176.

%H P. J. Grabner, P. Kirschenhofer, H. Prodinger and R. F. Tichy, <a href="http://math.sun.ac.za/~hproding/abstract/abs_80.htm">On the moments of the sum-of-digits function</a>, <a href="http://math.sun.ac.za/~hproding/pdffiles/st_andrews.pdf">PDF</a>, Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992), pp. 263-271, Kluwer Acad. Publ., Dordrecht, 1993.

%H Hsien-Kuei Hwang, Svante Janson and Tsung-Hsi Tsai, <a href="https://doi.org/10.1145/3127585">Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications</a>, ACM Transactions on Algorithms, Vol. 13, No. 4 (2017), Article #47; <a href="https://www.researchgate.net/profile/Hsien-Kuei-Hwang/publication/320642171_Exact_and_Asymptotic_Solutions_of_a_Divide-and-Conquer_Recurrence_Dividing_at_Half_Theory_and_Applications/links/59f9a5be0f7e9b553ec0eaad">ResearchGate link</a>; <a href="http://140.109.74.92/hk/wp-content/files/2016/12/aat-hhrr-1.pdf">preprint</a>, 2016.

%H J.-L. Mauclaire and Leo Murata, <a href="https://dx.doi.org/10.3792/pjaa.59.274">On q-additive functions. I</a>, Proc. Japan Acad. Ser. A Math. Sci., Vol. 59, No. 6 (1983), pp. 274-276.

%H J.-L. Mauclaire and Leo Murata, <a href="https://dx.doi.org/10.3792/pjaa.59.441">On q-additive functions. II</a>, Proc. Japan Acad. Ser. A Math. Sci., Vol. 59, No. 9 (1983), pp. 441-444.

%H J. R. Trollope, <a href="http://www.jstor.org/stable/2687954">An explicit expression for binary digital sums</a>, Math. Mag., Vol. 41, No. 1 (1968), pp. 21-25.

%F a(n) ~ 5*n*log(n)/(2*log(6)). - _Amiram Eldar_, Dec 09 2021

%t Accumulate[f[n_]:=n - 5 Sum[Floor[n/6^k], {k, n}]; Array[f, 100, 0]] (* _Vincenzo Librandi_, Sep 04 2016 *)

%o (PARI) a(n) = sum(i=0, n, sumdigits(i, 6)); \\ _Michel Marcus_, Dec 09 2021

%Y Cf. A053827, A231673, A231674, A231675.

%K nonn,base

%O 0,3

%A _N. J. A. Sloane_, Nov 13 2013