login
A231573
Composite numbers n such that lambda(n) divides 6n-6, where lambda is the Carmichael lambda function (A002322).
4
4, 6, 8, 9, 12, 14, 15, 18, 21, 24, 28, 35, 36, 39, 42, 45, 56, 63, 65, 66, 72, 76, 84, 91, 105, 117, 126, 133, 153, 168, 186, 195, 231, 247, 252, 259, 273, 276, 315, 341, 344, 396, 435, 455, 481, 504, 532, 561, 585, 616, 645, 651, 671, 703, 804, 819, 861
OFFSET
1,1
COMMENTS
Contains the Carmichael numbers, A231569 and A231570.
Conjecture: the relative asymptotic density of Carmichael numbers in this sequence exists, is positive and smaller than 1.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
J. M. Grau and Antonio Oller-Marcén, Generalizing Giuga's conjecture, arXiv:1103.3483 [math.NT], 2011.
MATHEMATICA
Select [1 + Range[100000], ! PrimeQ[#] && IntegerQ[6 (# -1)/ CarmichaelLambda[#]] &]
PROG
(PARI) is(n)=!isprime(n) && (6*n-6)%lcm(znstar(n)[2])==0 && n>1 \\ Charles R Greathouse IV, Nov 13 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved