login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231272
Numbers n with unique solution to n = +-1^2+-2^2+-3^2+-4^2+-...+-k^2 with minimal k giving at least one solution.
4
1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 35, 36, 37, 38, 44, 45, 47, 49, 51, 53, 55, 56, 57, 59, 60, 62, 63, 64, 65, 66, 68, 70, 71, 72, 73, 76, 78, 81, 83, 86, 89, 91, 92, 94, 98, 100, 102, 106, 108, 109
OFFSET
1,2
COMMENTS
Numbers n such that A231071(n) = 1. The value of k is given by A231015(n).
LINKS
Andrica, D., Vacaretu, D., Representation theorems and almost unimodal sequences, Studia Univ. Babes-Bolyai, Mathematica, Vol. LI, 4 (2006), 23-33.
EXAMPLE
10 is member of the sequence with unique minimal solution 10 = -1+4-9+16.
A000330(k) = k(k+1)(2k+1)/6 = 1^2 + 2^2 + ... + k^2 is a member for k > 0. - Jonathan Sondow, Nov 06 2013
MAPLE
b:= proc(n, i) option remember; local m, t; m:= (1+(3+2*i)*i)*i/6;
if n>m then 0 elif n=m then 1 else
t:= b(abs(n-i^2), i-1);
if t>1 then return 2 fi;
t:= t+b(n+i^2, i-1); `if`(t>1, 2, t)
fi
end:
a:= proc(n) option remember; local m, k;
for m from 1+ `if`(n=1, -1, a(n-1)) do
for k while b(m, k)=0 do od;
if b(m, k)=1 then return m fi
od
end:
seq(a(n), n=1..80);
MATHEMATICA
b[n_, i_] := b[n, i] = Module[{m, t}, m = (1 + (3 + 2*i)*i)*i/6; If[n > m, 0, If[n == m, 1, t = b[Abs[n - i^2], i - 1]; If[t > 1, Return[2]]; t = t + b[n + i^2, i - 1]; If[t > 1, 2, t]]]];
a[n_] := a[n] = Module[{m, k}, For[m = 1 + If[n == 1, -1, a[n - 1]], True, m++, For[k = 1, b[m, k] == 0, k++]; If[b[m, k] == 1, Return[m]]]];
Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Sep 01 2022, after Alois P. Heinz *)
CROSSREFS
Cf. A000330, A231015, A231071, A231016 (complement).
Sequence in context: A031492 A350076 A035060 * A143719 A078779 A351958
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 06 2013
STATUS
approved