login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231016
Numbers n with non-unique solution to n = +- 1^2 +- 2^2 +- ... +- k^2 with minimal k giving at least one solution.
2
0, 8, 9, 16, 18, 25, 31, 32, 33, 34, 39, 40, 41, 42, 43, 46, 48, 50, 52, 54, 58, 61, 67, 69, 74, 75, 77, 79, 80, 82, 84, 85, 87, 88, 90, 93, 95, 96, 97, 99, 101, 103, 104, 105, 107, 110, 111, 113, 115, 116, 117, 118, 121, 123, 127, 129
OFFSET
1,2
COMMENTS
The minimal k = A231015(n).
Complement of A231272.
LINKS
Andrica, D., Vacaretu, D., Representation theorems and almost unimodal sequences, Studia Univ. Babes-Bolyai, Mathematica, Vol. LI, 4 (2006), 23-33.
FORMULA
{ n : A231071(n) > 1 }.
EXAMPLE
0 = 1 + 4 - 9 + 16 - 25 - 36 + 49 = sum with signs reversed, so 0 is a member.
9 = - 1 - 4 + 9 + 16 + 25 - 36 = 1 + 4 + 9 - 16 - 25 + 36, so 9 is a member.
A000330(k) = k(k+1)(2k+1)/6 = 1^2 + 2^2 + ... + k^2 is not a member, for k > 0.
MAPLE
b:= proc(n, i) option remember; local m, t; m:= (1+(3+2*i)*i)*i/6;
if n>m then 0 elif n=m then 1 else
t:= b(abs(n-i^2), i-1);
if t>1 then return 2 fi;
t:= t+b(n+i^2, i-1); `if`(t>1, 2, t)
fi
end:
a:= proc(n) option remember; local m, k;
for m from 1+ `if`(n=1, -1, a(n-1)) do
for k while b(m, k)=0 do od;
if b(m, k)>1 then return m fi
od
end:
seq(a(n), n=1..80); # Alois P. Heinz, Nov 06 2013
MATHEMATICA
b[n_, i_] := b[n, i] = Module[{m, t}, m = (1+(3+2*i)*i)*i/6; Which[n>m, 0, n == m, 1, True, t = b[Abs[n-i^2], i-1]; If[t>1, Return[2]]; t = t + b[n+i^2, i-1]; If[t>1, 2, t]]]; a[n_] := a[n] = Module[{m, k}, For[m = 1 + If[n == 1, -1, a[n-1]], True, m++, For[k = 1, b[m, k] == 0, k++]; If[b[m, k]>1, Return[m]]]]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Jan 28 2014, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Nov 06 2013
STATUS
approved