OFFSET
1,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000
Andrica, D., Vacaretu, D., Representation theorems and almost unimodal sequences, Studia Univ. Babes-Bolyai, Mathematica, Vol. LI, 4 (2006), 23-33.
FORMULA
{ n : A231071(n) > 1 }.
EXAMPLE
0 = 1 + 4 - 9 + 16 - 25 - 36 + 49 = sum with signs reversed, so 0 is a member.
9 = - 1 - 4 + 9 + 16 + 25 - 36 = 1 + 4 + 9 - 16 - 25 + 36, so 9 is a member.
A000330(k) = k(k+1)(2k+1)/6 = 1^2 + 2^2 + ... + k^2 is not a member, for k > 0.
MAPLE
b:= proc(n, i) option remember; local m, t; m:= (1+(3+2*i)*i)*i/6;
if n>m then 0 elif n=m then 1 else
t:= b(abs(n-i^2), i-1);
if t>1 then return 2 fi;
t:= t+b(n+i^2, i-1); `if`(t>1, 2, t)
fi
end:
a:= proc(n) option remember; local m, k;
for m from 1+ `if`(n=1, -1, a(n-1)) do
for k while b(m, k)=0 do od;
if b(m, k)>1 then return m fi
od
end:
seq(a(n), n=1..80); # Alois P. Heinz, Nov 06 2013
MATHEMATICA
b[n_, i_] := b[n, i] = Module[{m, t}, m = (1+(3+2*i)*i)*i/6; Which[n>m, 0, n == m, 1, True, t = b[Abs[n-i^2], i-1]; If[t>1, Return[2]]; t = t + b[n+i^2, i-1]; If[t>1, 2, t]]]; a[n_] := a[n] = Module[{m, k}, For[m = 1 + If[n == 1, -1, a[n-1]], True, m++, For[k = 1, b[m, k] == 0, k++]; If[b[m, k]>1, Return[m]]]]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Jan 28 2014, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Nov 06 2013
STATUS
approved