login
A231135
Number of (n+1)X(4+1) black-square subarrays of 0..2 arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order
1
16, 182, 2260, 27171, 336004, 4066129, 50257244, 608468617, 7520563372, 91054483047, 1125418461348, 13625913937795, 168414092245220, 2039060342079409, 25202456511185596, 305136757252909097
OFFSET
1,1
COMMENTS
Column 4 of A231137
LINKS
FORMULA
Empirical: a(n) = 175*a(n-2) -4017*a(n-4) +34311*a(n-6) -146236*a(n-8) +322472*a(n-10) -291040*a(n-12) +116032*a(n-14) -24064*a(n-16) +1024*a(n-18)
EXAMPLE
Some solutions for n=4
..x..0..x..1..x....x..0..x..1..x....x..0..x..1..x....x..0..x..0..x
..0..x..2..x..0....1..x..0..x..2....2..x..0..x..1....0..x..1..x..2
..x..1..x..0..x....x..2..x..2..x....x..2..x..0..x....x..2..x..2..x
..1..x..1..x..1....0..x..1..x..0....1..x..1..x..2....1..x..1..x..1
..x..2..x..0..x....x..0..x..2..x....x..2..x..1..x....x..2..x..0..x
CROSSREFS
Sequence in context: A199018 A204608 A279282 * A230992 A016298 A288720
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 04 2013
STATUS
approved