login
Number of (n+1)X(4+1) black-square subarrays of 0..2 arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order
1

%I #4 Nov 04 2013 07:37:17

%S 16,182,2260,27171,336004,4066129,50257244,608468617,7520563372,

%T 91054483047,1125418461348,13625913937795,168414092245220,

%U 2039060342079409,25202456511185596,305136757252909097

%N Number of (n+1)X(4+1) black-square subarrays of 0..2 arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order

%C Column 4 of A231137

%H R. H. Hardin, <a href="/A231135/b231135.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 175*a(n-2) -4017*a(n-4) +34311*a(n-6) -146236*a(n-8) +322472*a(n-10) -291040*a(n-12) +116032*a(n-14) -24064*a(n-16) +1024*a(n-18)

%e Some solutions for n=4

%e ..x..0..x..1..x....x..0..x..1..x....x..0..x..1..x....x..0..x..0..x

%e ..0..x..2..x..0....1..x..0..x..2....2..x..0..x..1....0..x..1..x..2

%e ..x..1..x..0..x....x..2..x..2..x....x..2..x..0..x....x..2..x..2..x

%e ..1..x..1..x..1....0..x..1..x..0....1..x..1..x..2....1..x..1..x..1

%e ..x..2..x..0..x....x..0..x..2..x....x..2..x..1..x....x..2..x..0..x

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 04 2013