OFFSET
0,3
FORMULA
Let u(n) = (-1)^n/(2n+1) and P(n,x) = u(n) + x*Sum_{i=0..n-1} u(i)*P(n-i-1,x)), with P(0,x) = u(0). Then, the terms are the denominators of the coefficients of x^2 in each polynomial.
MATHEMATICA
a[n_] := SeriesCoefficient[ArcTan[x]^3, {x, 0, 2*n+3}] // Denominator
(* or *) a[n_] := 3*Sum[2^(i-2)*Binomial[2*(n+1), i-1]*StirlingS1[i, 3]/i!, {i, 3, 2n+3}] // Denominator; Table[a[n], {n, 0, 20}] (* from the formula given by Ruperto Corso in A002429 *)
Take[Denominator[CoefficientList[Series[ArcTan[x]^3, {x, 0, 50}], x] ], {4, -1, 2}] (* Harvey P. Dale, Apr 07 2017 *)
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Jean-François Alcover and Paul Curtz, Nov 04 2013
STATUS
approved