login
A230409
Partial sums of A230407.
7
0, -1, 0, 3, -2, -3, 0, 1, 4, -1, -2, 5, 4, -1, -2, -7, -2, 3, -2, -13, -12, -9, -20, -19, -22, -19, -18, -15, -20, -21, -14, -15, -20, -21, -26, -21, -16, -21, -32, -31, -28, -49, -48, -51, -54, -45, -44, -45, -50, -51, -56, -51, -46, -51, -62, -61, -58, -79
OFFSET
0,4
COMMENTS
The term a(n) indicates approximately the "balance" of the factorial beanstalk (cf. A219666) at n steps up from the root, which in turn correlates with the behavior of such sequences as A219662 and A219663.
This sequence relates to the factorial base representation (A007623) in the same way as A218789 relates to the binary system.
Question: When will a negative term occur next time, after a(251) = -41 ?
LINKS
FORMULA
a(0) = 0, a(n) = a(n-1) + A230407(n).
PROG
(Scheme, with Antti Karttunen's IntSeq-library)
(define A230409 (PARTIALSUMS 0 0 A230407))
;; Alternatively, using memoization macro definec from the same library:
(definec (A230409 n) (if (zero? n) n (+ (A230407 n) (A230409 (- n 1)))))
CROSSREFS
KEYWORD
sign
AUTHOR
Antti Karttunen, Nov 10 2013
STATUS
approved