This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A230118 Numbers of quasi-espalier polycubes of a given volume (number of atomic cells). 1
 1, 2, 4, 7, 12, 18, 29, 42, 61, 87, 122, 167, 229, 306, 409, 538, 705, 915, 1182, 1509, 1927, 2438, 3075, 3854, 4814, 5985, 7416, 9144, 11253, 13784, 16845, 20512, 24922, 30179, 36470, 43939, 52841, 63378, 75864, 90605, 108022, 128496, 152603, 180865, 214044, 252826, 298192, 351108, 412832, 484632, 568157 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A pyramid polycube is obtained by gluing together horizontal plateaux (parallelepipeds of height 1) in such a way that (0,0,0) belongs to the first plateau and each cell with coordinate (0,b,c) belonging to the first plateau is such that b , c >= 0. If the cell with coordinates (a,b,c) belongs to the (a+1)-st plateau (a>0), then the cell with coordinates (a-1, b, c) belongs to the a-th plateau. An espalier polycube is a special pyramid such that each plateau contains the cell with coordinate (a,0,0). Quasi espaliers are espaliers from which all the cells with coordinates (a,0,0) have been removed. If E(x,h) denotes the generating function of espalier polycubes, x^(-h) E(x,h) converges when h tends to infinity towards a series which is the generating function of quasi-espalier polycubes. LINKS MAPLE calcRecEsp:=proc(i, j, k, l) option remember; ## Compute the number n_{i, j, k, l} if (l<0) then 0 elif (i*j*k>l) then 0 elif k=1 then if (i*j=l) then 1 else 0; fi; else s:=0; a:=0; b:=0; while ((i+a)*j*(k-1)<=l-i*j) do b:=0; while ((i+a)*(j+b)*(k-1)<=l-i*j) do s:=s+calcRecEsp(i+a, j+b, k-1, l-i*j); b:=b+1; od; a:=a+1; od; s; fi; end; compteEsp:=proc(l) ### compute \sum_{v}n_{h, v}t^v s:=0; for k to l do i:=1: while (i*k<=l) do j:=1; while (i*k*j<=l) do s:=s+t^k*calcRecEsp(i, j, k, l); j:=j+1; od: i:=i+1; od; od; s; end; enum = [seq(op(convert(compteEsp(ii), list)), ii=2..200)]; serie_quasi_Esp:=proc(l)global enum; local ii; map(coeff, enum, t^l); select(x->x>0, %); sum(t^(ii-1)*%[ii], ii=1..nops(%)); end; serie_quasi_Esp(100): [1, seq(coeff(%, t^ii)-1, ii=1..50)]; CROSSREFS Cf. A227925, A229915. Sequence in context: A003318 A035300 A035296 * A105807 A209616 A192521 Adjacent sequences:  A230115 A230116 A230117 * A230119 A230120 A230121 KEYWORD nonn AUTHOR Matthieu Deneufchâtel, Oct 10 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 20 02:57 EST 2018. Contains 317371 sequences. (Running on oeis4.)