login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A230011
Numerators of sum of rows of the inverse of the triangle of Euler polynomial coefficients P(0,x)=1, 2P(n,x)=(1+x)*[(1+x)^(n-1)+x^(n-1)].
1
1, 0, 1, -1, 1, -1, 3, -3, -11, 11, 113, -113, -1269, 1269, 20575, -20575, -888419, 888419, 24729909, -24729909, -862992415, 862992415, 36913939753, -36913939753, -1899853421901, 1899853421901, 115841483491307, -115841483491307
OFFSET
0,7
COMMENTS
See A133135.
Denominators are 1, 1, 2, 2, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 32, 32, ..., a sequence which matches A053644, except the first term.
EXAMPLE
1, 0, 1/2, -1/2, 1/4, -1/4, 3/4, -3/4, -11/8, 11/8, 113/8, -113/8, ...
MATHEMATICA
max = 30; p[0, _] = 1; p[n_, x_] := (1+x)*((1+x)^(n-1)+x^(n-1))/2; t = Total /@ Inverse @ Table[Coefficient[p[n, x], x, k], {n, 0, max+2}, {k, 0, max+2}]; a[n_] := t[[n+1]] // Numerator; Table[a[n], {n, 0, max}]
CROSSREFS
Sequence in context: A146583 A146458 A122573 * A136123 A045495 A045494
KEYWORD
sign,frac,easy
AUTHOR
STATUS
approved