login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133135
Third column of the inverse of the triangle of polynomial coefficients P(0,x)=1, 2P(n,x)=(1+x)*[(1+x)^(n-1)+x^(n-1)].
10
1, -2, 2, -1, 1, -4, 4, 13, -13, -142, 142, 1931, -1931, -36296, 36296, 893273, -893273, -27927346, 27927346, 1081725559, -1081725559, -50861556172, 50861556172, 2854289486309, -2854289486309, -188475382997654, 188475382997654, 14467150771771043, -14467150771771043
OFFSET
0,2
COMMENTS
The triangle with [x^k] P(n,x) starts
1;
1, 1;
1/2, 3/2, 1;
1/2, 3/2, 2, 1;
1/2, 2, 3, 5/2, 1;
1/2, 5/2, 5, 5, 3, 1;
1/2, 3,15/2, 10,15/2, 7/2, 1;
1/2, 7/2,21/2,35/2,35/2,21/2, 4, 1;
1/2, 4, 14, 28, 35, 28, 14, 9/2, 1;
1/2, 9/2, 18, 42, 63, 63, 42, 18, 5, 1;
The sum of the rows of this triangle is A094373 (previously noticed by Paul Curtz). - Jean-François Alcover, Jul 22 2013
Apparently a(2*n) = A102055(n) and a(2*n+1) = -a(2*n) for n >= 0. - Georg Fischer, Dec 05 2022
EXAMPLE
The inverse of the triangle of coefficients starts
1;
-1, 1;
1, -3/2, 1;
-1, 3/2, -2, 1;
1, -5/4, 2, -5/2, 1;
-1, 5/4 -1, 5/2, -3, 1;
1, -7/4, 1, 0, 3, -7/2, 1;
-1, 7/4,-4, 0, 2, 7/2,-4, 1;
1, 3/8, 4,-21/2, -2, 21/4, 4,-9/2, 1;
-1, -3/8,13, 21/2,-26,-21/4,10, 9/2,-5, 1;
and defines the sequence in its third column.
Apart from the numbers along the diagonal, the absolute values show up in pairs if read along columns. Conjectures: Starting with the third line, columns are alternatingly fractions and integers. The row sums (1, 0, 1/2, -1/2, 1/4, -1/4, 3/4, -3/4, -11/8, 11/8,..) also show up in pairs from the third row on.
MATHEMATICA
max = 28; p[0, _] = 1; p[n_, x_] := (1 + x)*((1 + x)^(n - 1) + x^(n - 1))/2; t = Table[ Coefficient[p[n, x], x, k], {n, 0, max + 2}, {k, 0, max + 2}]; a[n_] := Inverse[t][[All, 3]][[n + 3]]; Table[a[n], {n, 0, max}] (* Jean-François Alcover, Jul 22 2013 *)
CROSSREFS
Sequence in context: A247364 A301895 A229054 * A292189 A284992 A191687
KEYWORD
sign
AUTHOR
Paul Curtz, Sep 21 2007
EXTENSIONS
Edited and extended by R. J. Mathar, Aug 02 2008
STATUS
approved