

A229985


Decimal expansion of the lower limit of the convergents of the continued fraction [1, 1/3, 1/9, 1/27, ... ].


2



1, 1, 1, 9, 9, 9, 3, 4, 0, 9, 9, 7, 2, 9, 5, 8, 7, 4, 0, 9, 1, 4, 2, 8, 3, 2, 4, 8, 2, 6, 0, 9, 5, 3, 2, 2, 9, 9, 6, 3, 8, 0, 1, 7, 0, 2, 8, 1, 5, 5, 2, 5, 0, 7, 0, 5, 8, 8, 5, 1, 0, 7, 5, 4, 8, 6, 6, 5, 4, 1, 5, 4, 6, 4, 6, 4, 2, 7, 4, 9, 8, 8, 2, 5, 8, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

Since sum{3^(k), k = 0,1,2,...} converges, the convergents of [1, 1/3, 1/9, 1/27, ... ] diverge, by the Seidel Convergence Theorem. However, the oddnumbered convergents converge, as do the evennumbered convergents. In the Example section, these limits are denoted by u and v.


LINKS

Table of n, a(n) for n=1..86.


EXAMPLE

u = 1.119... = [1, 8, 2, 1, 242, 8, 1, 6560, 26, 1, 177146, 80, 1,...];
v = 3.668... = [3, 1, 2, 80, 1, 8, 2186, 1, 26, 59048, 1, 80, ...].
In both cases, every term of the continued fraction has the form 3^m  1.


MATHEMATICA

$MaxExtraPrecision = Infinity; z = 500; t = Table[3^(n), {n, 0, z}]; u = N[Convergents[t][[z  1]], 120]; v = N[Convergents[t][[z]], 120];
RealDigits[u] (* A229985 *)
RealDigits[v] (* A229986 *)


CROSSREFS

Cf. A229986, A024023.
Sequence in context: A197149 A274031 A111623 * A019897 A111613 A111591
Adjacent sequences: A229982 A229983 A229984 * A229986 A229987 A229988


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Oct 06 2013


STATUS

approved



