login
A229630
a(n) is the smallest semiprime m such that 2*m^k-1 is prime for k = 1, 2, ..., n.
0
4, 4, 4, 6, 6, 118909855, 5740959589, 79235997091
OFFSET
1,1
EXAMPLE
a(5)=6 because 2*6^k-1 is prime for k=1,2,3,4,5 and 6 is the smallest semiprime with this property. Also 6 is the smallest such number.
MATHEMATICA
a[n_]:=(For[m=1, !(2<Length[Divisors[m]]<5&&Union[Table[PrimeQ[2m^k-1], {k, n}]]=={True}), m++]; m); Do[Print[a[n]], {n, 7}]
PROG
(PARI) \\ Code to find a(8), can be modified to find other terms easily
issemi(n)=bigomega(n)==2
is8(m)=for(i=2, 8, if(!ispseudoprime(2*m^i-1), return(0))); 1
forprime(p=2, 1e12, m=(p+1)/2; if(issemi(m)&&is8(m), return(m))) \\ Charles R Greathouse IV, Oct 17 2013
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Farideh Firoozbakht, Oct 14 2013
EXTENSIONS
a(8) from Charles R Greathouse IV, Oct 17 2013
STATUS
approved