login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n with nonzero digits such that n*(product of digits of n) is a palindrome.
2

%I #20 Apr 15 2015 17:40:53

%S 1,2,3,11,19,22,35,37,77,111,115,116,121,131,212,464,671,731,1111,

%T 1221,1229,2112,4136,4147,6346,9832,11111,11151,11161,11211,11311,

%U 12121,12477,12692,12734,17951,18619,21112,22622

%N Numbers n with nonzero digits such that n*(product of digits of n) is a palindrome.

%H Giovanni Resta, <a href="/A229550/b229550.txt">Table of n, a(n) for n = 1..500</a>

%e 4136*(4*1*3*6) = 297792 (a palindrome). So, 4136 is a member of this sequence.

%o (Python)

%o def ispal(n):

%o ..r = ''

%o ..for i in str(n):

%o ....r = i + r

%o ..return n == int(r)

%o def DP(n):

%o ..p = 1

%o ..for i in str(n):

%o ....p *= int(i)

%o ..return p

%o {print(n,end=', ') for n in range(10**4) if DP(n) and ispal(n*DP(n))}

%o ## Simplified by _Derek Orr_, Apr 10 2015

%o (PARI) ispal(n)=n=digits(n); n==Vecrev(n)

%o dprod(n)=n=digits(n); prod(i=1,#n,n[i])

%o is(n)=my(d=dprod(n)); d && ispal(d*n) \\ _Charles R Greathouse IV_, Apr 30 2014

%Y Cf. A007954.

%K nonn,base

%O 1,2

%A _Derek Orr_, Sep 26 2013