%I
%S 0,0,0,0,6,0,0,48,48,0,0,288,480,288,0,0,1536,4032,4032,1536,0,0,7680,
%T 31104,50112,31104,7680,0,0,36864,228096,575424,575424,228096,36864,0,
%U 0,172032,1617408,6298560,9854784,6298560,1617408,172032,0,0,786432
%N T(n,k)=Number of defective 3colorings of an nXk 0..2 array connected diagonally and antidiagonally with exactly one mistake, and colors introduced in rowmajor 0..2 order
%C Table starts
%C .0......0........0.........0...........0.............0...............0
%C .0......6.......48.......288........1536..........7680...........36864
%C .0.....48......480......4032.......31104........228096.........1617408
%C .0....288.....4032.....50112......575424.......6298560........66764736
%C .0...1536....31104....575424.....9854784.....162171072......2591476416
%C .0...7680...228096...6298560...162171072....4032737280.....97662620160
%C .0..36864..1617408..66764736..2591476416...97662620160...3594819388032
%C .0.172032.11197440.691581888.40561000128.2320483572864.130060929470976
%H R. H. Hardin, <a href="/A229510/b229510.txt">Table of n, a(n) for n = 1..264</a>
%F Empirical for column k:
%F k=1: a(n) = a(n1)
%F k=2: a(n) = 8*a(n1) 16*a(n2)
%F k=3: a(n) = 12*a(n1) 36*a(n2) for n>3
%F k=4: a(n) = 18*a(n1) 81*a(n2) for n>4
%F k=5: [order 8] for n>9
%F k=6: [order 12] for n>13
%F k=7: [order 30] for n>31
%e Some solutions for n=3 k=4
%e ..0..1..0..0....0..1..0..1....0..1..1..0....0..1..0..2....0..0..1..1
%e ..0..2..2..2....0..2..2..1....1..2..2..2....2..1..2..1....2..2..2..2
%e ..1..0..1..1....2..1..0..1....1..0..1..1....2..0..0..1....0..1..1..2
%K nonn,tabl
%O 1,5
%A _R. H. Hardin_ Sep 25 2013
