login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229510
T(n,k) = number of defective 3-colorings of an n X k 0..2 array connected diagonally and antidiagonally with exactly one mistake, and colors introduced in row-major 0..2 order.
8
0, 0, 0, 0, 6, 0, 0, 48, 48, 0, 0, 288, 480, 288, 0, 0, 1536, 4032, 4032, 1536, 0, 0, 7680, 31104, 50112, 31104, 7680, 0, 0, 36864, 228096, 575424, 575424, 228096, 36864, 0, 0, 172032, 1617408, 6298560, 9854784, 6298560, 1617408, 172032, 0, 0, 786432
OFFSET
1,5
COMMENTS
Table starts
.0......0........0.........0...........0.............0...............0
.0......6.......48.......288........1536..........7680...........36864
.0.....48......480......4032.......31104........228096.........1617408
.0....288.....4032.....50112......575424.......6298560........66764736
.0...1536....31104....575424.....9854784.....162171072......2591476416
.0...7680...228096...6298560...162171072....4032737280.....97662620160
.0..36864..1617408..66764736..2591476416...97662620160...3594819388032
.0.172032.11197440.691581888.40561000128.2320483572864.130060929470976
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1).
k=2: a(n) = 8*a(n-1) - 16*a(n-2).
k=3: a(n) = 12*a(n-1) - 36*a(n-2) for n > 3.
k=4: a(n) = 18*a(n-1) - 81*a(n-2) for n > 4.
k=5: [order 8] for n > 9.
k=6: [order 12] for n > 13.
k=7: [order 30] for n > 31.
EXAMPLE
Some solutions for n=3, k=4:
0 1 0 0 0 1 0 1 0 1 1 0 0 1 0 2 0 0 1 1
0 2 2 2 0 2 2 1 1 2 2 2 2 1 2 1 2 2 2 2
1 0 1 1 2 1 0 1 1 0 1 1 2 0 0 1 0 1 1 2
CROSSREFS
Sequence in context: A019157 A019184 A019185 * A358891 A358515 A230787
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Sep 25 2013
STATUS
approved