|
|
A229510
|
|
T(n,k) = number of defective 3-colorings of an n X k 0..2 array connected diagonally and antidiagonally with exactly one mistake, and colors introduced in row-major 0..2 order.
|
|
8
|
|
|
0, 0, 0, 0, 6, 0, 0, 48, 48, 0, 0, 288, 480, 288, 0, 0, 1536, 4032, 4032, 1536, 0, 0, 7680, 31104, 50112, 31104, 7680, 0, 0, 36864, 228096, 575424, 575424, 228096, 36864, 0, 0, 172032, 1617408, 6298560, 9854784, 6298560, 1617408, 172032, 0, 0, 786432
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
COMMENTS
|
Table starts
.0......0........0.........0...........0.............0...............0
.0......6.......48.......288........1536..........7680...........36864
.0.....48......480......4032.......31104........228096.........1617408
.0....288.....4032.....50112......575424.......6298560........66764736
.0...1536....31104....575424.....9854784.....162171072......2591476416
.0...7680...228096...6298560...162171072....4032737280.....97662620160
.0..36864..1617408..66764736..2591476416...97662620160...3594819388032
.0.172032.11197440.691581888.40561000128.2320483572864.130060929470976
|
|
LINKS
|
|
|
FORMULA
|
Empirical for column k:
k=1: a(n) = a(n-1).
k=2: a(n) = 8*a(n-1) - 16*a(n-2).
k=3: a(n) = 12*a(n-1) - 36*a(n-2) for n > 3.
k=4: a(n) = 18*a(n-1) - 81*a(n-2) for n > 4.
k=5: [order 8] for n > 9.
k=6: [order 12] for n > 13.
k=7: [order 30] for n > 31.
|
|
EXAMPLE
|
Some solutions for n=3, k=4:
0 1 0 0 0 1 0 1 0 1 1 0 0 1 0 2 0 0 1 1
0 2 2 2 0 2 2 1 1 2 2 2 2 1 2 1 2 2 2 2
1 0 1 1 2 1 0 1 1 0 1 1 2 0 0 1 0 1 1 2
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|