login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Primitive numbers in A229304.
16

%I #15 Oct 21 2013 09:47:50

%S 10,26,55,57,58,136,155,222,253,346,355,381,737,876,904,1027,1055,

%T 1081,1552,1711,1751,1962,2155,2696,2758,3197,3403,3411,3775,3916,

%U 4063,4132,4401,5093,5671,6176,6455,6567,7111,7226,8251,8515,8702,9294,9316,9465

%N Primitive numbers in A229304.

%H Jose María Grau, A. M. Oller-Marcen, and J. Sondow, <a href="http://arxiv.org/abs/1309.7941">On the congruence 1^n + 2^n +... + n^n = d (mod n), where d divides n</a>

%t g[n_] := Mod[Sum[PowerMod[i, n, n], {i, 1, n}], n]; tachar[lis_, num_] := Select[lis, ! IntegerQ[#1/num] &];primi[{}] = {}; primi[lis_] := Join[{lis[[1]]}, primi[tachar[lis, lis[[1]]]]]; primi@Select[Range[70], ! g[1806*#] == # &]

%Y Cf. A014117 (numbers n such that A031971(n)==1 (mod n)).

%Y Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).

%Y Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).

%Y Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).

%Y Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).

%Y Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).

%Y Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).

%Y Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).

%Y Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).

%Y Cf. A229308 (primitive numbers in A229304).

%Y Cf. A229309 (primitive numbers in A229305).

%Y Cf. A229310 (primitive numbers in A229306).

%Y Cf. A229311 (primitive numbers in A229307).

%K nonn

%O 1,1

%A _José María Grau Ribas_, Sep 20 2013