|
|
A229139
|
|
Smallest m such that Fibonacci(2n-1) = m^2 + k^2.
|
|
1
|
|
|
0, 1, 1, 2, 3, 5, 8, 9, 21, 34, 55, 89, 73, 13, 377, 610, 987, 64, 244, 4155, 4554, 10946, 2191, 28657, 15857, 74957, 34022, 29811, 50481, 134104, 832040, 162589, 387938, 711703, 1556305, 6229800, 4173137, 4059539, 1972951, 51797450, 4866315, 165580141, 46049477, 202620393, 348451533, 181781990
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
Every odd-indexed Fibonacci number (A000045) is a sum of two squares (see A124134).
Which of the a(n) are not Fibonacci numbers?
|
|
LINKS
|
|
|
EXAMPLE
|
A000045(2*6-1) = 89 = 5^2 + 8^2 so a(6)=5.
A000045(2*8-1) = 610 = 9^2 + 23^2 = 13^2 + 21^2, so a(8)=9.
|
|
PROG
|
(PARI) for(n=1, 10^6, t=fibonacci(2*n-1); s=sqrtint(t); forstep(i=s, 1, -1, if(issquare(t-i*i), print1(sqrtint(t-i*i), ", "); break)))
(Haskell)
a229139 1 = 0
a229139 n = head $
dropWhile (== 0) $ map (a037213 . (t -) . (^ 2)) [s, s - 1 ..]
where t = a000045 (2 * n - 1); s = a000196 t
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|