login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229139
Smallest m such that Fibonacci(2n-1) = m^2 + k^2.
1
0, 1, 1, 2, 3, 5, 8, 9, 21, 34, 55, 89, 73, 13, 377, 610, 987, 64, 244, 4155, 4554, 10946, 2191, 28657, 15857, 74957, 34022, 29811, 50481, 134104, 832040, 162589, 387938, 711703, 1556305, 6229800, 4173137, 4059539, 1972951, 51797450, 4866315, 165580141, 46049477, 202620393, 348451533, 181781990
OFFSET
1,4
COMMENTS
Every odd-indexed Fibonacci number (A000045) is a sum of two squares (see A124134).
Which of the a(n) are not Fibonacci numbers?
EXAMPLE
A000045(2*6-1) = 89 = 5^2 + 8^2 so a(6)=5.
A000045(2*8-1) = 610 = 9^2 + 23^2 = 13^2 + 21^2, so a(8)=9.
PROG
(PARI) for(n=1, 10^6, t=fibonacci(2*n-1); s=sqrtint(t); forstep(i=s, 1, -1, if(issquare(t-i*i), print1(sqrtint(t-i*i), ", "); break)))
(Haskell)
a229139 1 = 0
a229139 n = head $
dropWhile (== 0) $ map (a037213 . (t -) . (^ 2)) [s, s - 1 ..]
where t = a000045 (2 * n - 1); s = a000196 t
-- Reinhard Zumkeller, Oct 11 2013
CROSSREFS
Cf. A000045.
Sequence in context: A099422 A294913 A056903 * A293277 A331864 A272669
KEYWORD
nonn
AUTHOR
Ralf Stephan, Sep 15 2013
STATUS
approved