Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Aug 16 2024 18:49:51
%S 1,3,14,115,1474,26306,605538,17116241,574398861,22333212354,
%T 987660842174,48969675370286,2690888441513773,162333780684342177,
%U 10667116965172284025,758434434866124781819,58015602766701416940599,4750972163883049286678765,414721061026426313701858479
%N Row sums of triangle A166890.
%C Triangle A166890 transforms diagonals in the table of coefficients of successive iterations of x*(1+x)^2 (cf. A166888).
%e Triangle A166890 begins:
%e 1;
%e 2, 1;
%e 9, 4, 1;
%e 78, 30, 6, 1;
%e 1038, 364, 63, 8, 1;
%e 18968, 6233, 986, 108, 10, 1;
%e 443595, 139008, 20685, 2072, 165, 12, 1;
%e 12681960, 3833052, 545736, 51494, 3750, 234, 14, 1; ...
%e of which the row sums form this sequence.
%o (PARI) {a(n, k)=local(F=x, M, N, P, m=max(n, k), A166890); M=matrix(m+2, m+2, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, x+2*x^2+x^3+x*O(x^(m+2)))); polcoeff(F, c)); N=matrix(m+1, m+1, r, c, M[r, c]); P=matrix(m+1, m+1, r, c, M[r+1, c]); A166890=P~*(N~)^-1;sum(k=0,n,A166890[n+1, k+1])}
%o for(n=0, 25, print1(a(n), ", "))
%Y Cf. A166890.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Sep 13 2013