login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229045
O.g.f.: Sum_{n>=0} x^n * Product_{k=1..n} (n*k + x) / (1 + n*k*x).
1
1, 1, 8, 120, 3516, 166328, 11532458, 1100805591, 138367161579, 22150155031528, 4399449078063293, 1061636331152735214, 305921694251090263429, 103759120501255220937827, 40916086296549562038319264, 18562249570081891918836678474, 9599588267110033395243891612720
OFFSET
0,3
COMMENTS
Compare to a g.f. of Fibonacci numbers (A000045):
Sum_{n>=0} x^n * Product_{k=1..n} (k + x)/(1 + k*x).
LINKS
FORMULA
a(n) ~ sqrt(Pi) * n^(2*n+1/2) / (sqrt(1-log(2)) * exp(2*n) * (log(2))^(2*n+1)). - Vaclav Kotesovec, Oct 28 2014
EXAMPLE
G.f.: A(x) = 1 + x + 8*x^2 + 120*x^3 + 3516*x^4 + 166328*x^5 +...
where
A(x) = 1 + x*(1+x)/(1+x) + x^2*(2+x)*(4+x)/((1+2*x)*(1+4*x)) + x^3*(3+x)*(6+x)*(9+x)/((1+3*x)*(1+6*x)*(1+9*x)) + x^4*(4+x)*(8+x)*(12+x)*(16+x)/((1+4*x)*(1+8*x)*(1+12*x)*(1+16*x)) +...
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, x^m*prod(k=1, m, m*k+x+x*O(x^n))/prod(k=1, m, 1+m*k*x+x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", ") )
CROSSREFS
Sequence in context: A045754 A339201 A360482 * A173774 A034669 A375419
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 02 2013
STATUS
approved