login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230682
O.g.f.: Sum_{n>=0} x^n * Product_{k=1..n} (k^2 + x)/(1 + k^2*x).
3
1, 1, 4, 21, 181, 2320, 41581, 991821, 30339364, 1156828681, 53761779721, 2990342767680, 196097039232121, 14969727522159481, 1315952342285654884, 131970189920614495581, 14974773731779775857021, 1908770813250950767227280, 271560466483540753565395621
OFFSET
0,3
COMMENTS
Compare to an o.g.f. of Genocchi numbers of the first kind (A110501):
Sum_{n>=0} x^n * Product_{k=1..n} k^2/(1 + k^2*x).
Also, compare to a g.f. of Fibonacci numbers (A000045):
Sum_{n>=0} x^n * Product_{k=1..n} (k + x)/(1 + k*x).
LINKS
FORMULA
a(n) ~ 2^(2*n+5) * n^(2*n+5/2) / (Pi^(2*n+3/2) * exp(2*n)). - Vaclav Kotesovec, Oct 28 2014
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 21*x^3 + 181*x^4 + 2320*x^5 + 41581*x^6 +...
where
A(x) = 1 + x*(1+x)/(1+x) + x^2*(1+x)*(4+x)/((1+x)*(1+4*x)) + x^3*(1+x)*(4+x)*(9+x)/((1+x)*(1+4*x)*(1+9*x)) + x^4*(1+x)*(4+x)*(9+x)*(16+x)/((1+x)*(1+4*x)*(1+9*x)*(1+16*x)) +...
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, x^m*prod(k=1, m, k^2+x+x*O(x^n))/prod(k=1, m, 1+k^2*x+x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A230740.
Sequence in context: A163948 A278993 A306067 * A231220 A231434 A221370
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 27 2013
STATUS
approved