OFFSET
0,3
COMMENTS
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..230
FORMULA
a(n) ~ 2^(2*n+5) * n^(2*n+5/2) / (Pi^(2*n+3/2) * exp(2*n)). - Vaclav Kotesovec, Oct 28 2014
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 21*x^3 + 181*x^4 + 2320*x^5 + 41581*x^6 +...
where
A(x) = 1 + x*(1+x)/(1+x) + x^2*(1+x)*(4+x)/((1+x)*(1+4*x)) + x^3*(1+x)*(4+x)*(9+x)/((1+x)*(1+4*x)*(1+9*x)) + x^4*(1+x)*(4+x)*(9+x)*(16+x)/((1+x)*(1+4*x)*(1+9*x)*(1+16*x)) +...
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, x^m*prod(k=1, m, k^2+x+x*O(x^n))/prod(k=1, m, 1+k^2*x+x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 27 2013
STATUS
approved