login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228641
Volume of torus (rounded down) with major radius = n and minor radius = n/3.
1
2, 17, 59, 140, 274, 473, 752, 1122, 1598, 2193, 2919, 3789, 4818, 6018, 7402, 8983, 10775, 12791, 15043, 17545, 20311, 23353, 26685, 30319, 34269, 38548, 43169, 48146, 53491, 59217, 65338, 71868, 78818, 86203, 94035, 102328, 111094, 120347, 130101, 140367, 151160
OFFSET
1,1
LINKS
Wikipedia, Torus
FORMULA
a(n) = floor( 2/9 * Pi^2 * n^3 ).
EXAMPLE
a(6) = 473 : volume = ((2 *Pi * n) * (Pi * (n/3)^2)) = ((2 *Pi * 6) * (Pi * (6/3)^2)) = 473.7410114 and floor(473.7410114) = 473.
MAPLE
KD := proc() local a; a:=floor( evalf( (2*Pi*n)*(Pi*(n/3)^2) ) ); RETURN (a) :end: seq(KD(), n=1..50);
PROG
(PARI) a(n)=floor(2/9*Pi^2*n^3) \\ Charles R Greathouse IV, Aug 28 2013
CROSSREFS
Cf. A228272.
Sequence in context: A368390 A175450 A071402 * A226417 A191295 A002430
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Aug 28 2013
STATUS
approved