

A228439


Numbers n dividing u(n), where the Lucas sequence is defined u(i) = u(i1)  2*u(i2) with initial conditions u(0)=0, u(1)=1.


0



1, 7, 49, 343, 2401, 4753, 16807, 33271, 76783, 117649, 232897, 461041, 537481, 823543, 1630279, 3227287, 3762367, 5764801
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Since the absolute value of the discriminant of the characteristic polynomial is prime (=7), the sequence contains every nonnegative integer power of 7. Other terms are formed on multiplication of 7^k by sporadic primes.


LINKS

Table of n, a(n) for n=1..18.
C. Smyth, The Terms in Lucas Sequences Divisible by their Indices, Journal of Integer Sequences, Vol. 13 (2010), Article 10.2.4.
Wikipedia, Lucas sequence


EXAMPLE

For n=0,1,...10, there is u(n)=0,1,1,1,3,1,5,7,3,17,11. Clearly only n=1 and n=7 satisfy n divides u(n).


MATHEMATICA

nn = 10000; s = LinearRecurrence[{1, 2}, {1, 1}, nn]; t = {}; Do[If[Mod[s[[n]], n] == 0, AppendTo[t, n]], {n, nn}]; t (* T. D. Noe, Nov 08 2013 *)


CROSSREFS

Cf. A107920 (Lucas Sequence u(n)=u(n1)2u(n2)).
Sequence in context: A269654 A250359 A045584 * A216130 A124536 A045578
Adjacent sequences: A228436 A228437 A228438 * A228440 A228441 A228442


KEYWORD

nonn


AUTHOR

Thomas M. Bridge, Nov 02 2013


STATUS

approved



