login
A228399
The number of permutations of length n sortable by 2 cut-and-paste moves.
1
1, 2, 6, 24, 120, 577, 2208, 6768, 17469, 39603, 81272, 154225, 274802, 464985, 753556, 1177362, 1782687, 2626731, 3779196, 5323979, 7360972, 10007969, 13402680, 17704852, 23098497, 29794227, 38031696, 48082149, 60251078, 74880985, 92354252, 113096118
OFFSET
1,2
LINKS
D. W. Cranston, I. H. Sudborough, and D. B. West, Short proofs for cut-and-paste sorting of permutations, Discrete Math. 307, 22 (2007), 2866-2870.
C. Homberger, V. Vatter, On the effective and automatic enumeration of polynomial permutation classes, arXiv preprint arXiv:1308.4946, 2013.
FORMULA
G.f.: -1 + (x^11 - 5*x^10 - 2*x^9 + 44*x^8 - 23*x^7 - 87*x^6 - 22*x^5 - 24*x^4 + 22*x^3 - 16*x^2 + 6*x - 1)/(x - 1)^7.
a(n) = n! for 0 < n < 5; for n > 4, a(n) = -18 + n*(107*n^5 -1077*n^4 +2225*n^3 +12345*n^2 -61732*n +80532)/720. [Bruno Berselli, Aug 22 2013]
EXAMPLE
The shortest permutations which cannot be sorted by 2 cut-and-paste moves are of length 6.
MATHEMATICA
CoefficientList[Series[(1/x) (-1 + (x^11 - 5 x^10 - 2 x^9 + 44 x^8 - 23 x^7 - 87 x^6 - 22 x^5 - 24 x^4 + 22 x^3 - 16 x^2 + 6 x - 1)/(x - 1)^7), {x,
0, 40}], x] (* Bruno Berselli, Aug 22 2013 *)
CROSSREFS
Sequence in context: A189861 A189570 A293775 * A179340 A179342 A179346
KEYWORD
nonn,easy
AUTHOR
Vincent Vatter, Aug 21 2013
STATUS
approved