login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228103
Numbers n whose base-10 digits can be split into two parts, q and r, with n = (q-r)^2.
2
100, 121, 6084, 10000, 10201, 82369, 132496, 1000000, 1002001, 1162084, 1201216, 1656369, 1860496, 100000000, 100020001, 123121216, 330621489, 10000000000, 10000200001, 13967221489, 113322449956, 1000000000000, 1000002000001, 1786590449956, 7438023471076, 100000000000000, 100000020000001, 161983503471076, 366292019505049, 553633229065744, 674650026648676, 9553960107298321, 10000000000000000, 10000000200000001
OFFSET
1,1
COMMENTS
q*10^m+r = (q-r)^2; q,m>0; 0<=r<10^m = A228381^2 - Hans Havermann, Aug 21 2013
LINKS
Daniel Joyce, Robert Israel and Lars Blomberg, Can more of these terms be found?
EXAMPLE
100 = (10-0)^2.
121 = (12-1)^2.
6084 = (6-084)^2.
MATHEMATICA
k=3; While[k<10^8, k++; s=k^2; d=IntegerDigits[s]; l=Length[d]; Do[a=FromDigits[Take[d, {1, i}]]; b=FromDigits[Take[d, {i+1, l}]]; If[k==Abs[a-b], w=ToString[s]; Print[StringTake[w, {1, i}], "'", StringTake[w, {i+1, l}]]], {i, l-1}]] (* Hans Havermann, Aug 10 2013, Aug 20 2013 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Hans Havermann, Aug 10 2013
STATUS
approved