login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228097
Integer areas of excentral triangles of integer-sided triangles.
0
30, 50, 75, 120, 195, 200, 260, 270, 300, 340, 450, 480, 510, 525, 585, 675, 700, 750, 765, 780, 800, 845, 1014, 1015, 1040, 1080, 1156, 1200, 1250, 1360, 1365, 1470, 1530, 1554, 1740, 1755, 1800, 1845, 1875, 1920, 2040, 2100, 2210, 2220, 2275, 2340, 2430
OFFSET
1,1
COMMENTS
The excentral triangle, also called the tritangent triangle, of a triangle ABC is the triangle IJK with vertices corresponding to the excenters of ABC.
The excentral triangle has side lengths:
a' = a*csc(A/2) where csc(z)=1/sin(z);
b' = b*csc(B/2);
c' = c*csc(C/2);
and area:
A' = 4*A*a*b*c/((a+b-c)*(a-b+c)*(-a+b+c)).
Property of this sequence:
The areas of the original triangles are integers. The primitive triangles with areas a(n) are 30, 50, 75, 195, ...
The non-primitive triangles with areas 4*a(n) are in the sequence.
The following table gives the first values (A', A, a, b, c) where A' is the area of the excentral triangles, A is the area of the reference triangles ABC, a, b, c the integer sides of the original triangles ABC.
----------------------
| A'| A | a| b| c|
----------------------
| 30| 6| 3| 4| 5|
| 50| 12| 5| 5| 6|
| 75| 12| 5| 5| 8|
|120| 24| 6| 8| 10|
|195| 30| 5| 12| 13|
|200| 48| 10| 10| 12|
|260| 24| 4| 13| 15|
|270| 54| 9| 12| 15|
|300| 48| 10| 10| 16|
|340| 60| 8| 15| 17|
......................
REFERENCES
C. Kimberling, Triangle Centers and Central Triangles. Congr. Numer. 129, 1-295, 1998.
EXAMPLE
30 is in the sequence because the area A' = 4*A*a*b*c/((a+b-c)*(a-b+c)*(-a+b+c)) of the excentral triangle corresponding to the initial triangle (3,4,5) is A' = 4*6*3*4*5/((3+4-5)*(3-4+5)*(-3+4+5)) = 30, where A = 6 obtained by Heron's formula A =sqrt(s*(s-a)*(s-b)*(s-c))= sqrt((6*(6-3)*(6-4)*(6-5)) = 6, and where s=6 is the semiperimeter.
The sides of the excentral triangle are:
a' = 3*csc(1/2*arcsin(3/5)) = 9.48683298...
b' = 4*csc(1/2*arcsin(4/5)) = 8.94427191...
c' = 5*sqrt(2) = 7.07106781...
MATHEMATICA
nn = 500; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 && IntegerQ[4*Sqrt[area2]*a*b*c/((a + b - c)*(a - b + c)*(-a + b + c))], AppendTo[lst, 4*Sqrt[area2]*a*b*c/((a + b - c)*(a - b + c)*(-a + b + c))]]], {a, nn}, {b, a}, {c, b}]; Union[lst]
CROSSREFS
Sequence in context: A365965 A307130 A379901 * A075285 A361668 A351540
KEYWORD
nonn
AUTHOR
Michel Lagneau, Oct 26 2013
STATUS
approved