login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A227965 a(1) = least k such that 1 + 1/2 < H(k) - H(2); a(2) = least k such that H(a(1)) - 1/2 < H(k) -H(a(1)), and for n > 2, a(n) = least k such that H(a(n-1)) - H(a(n-2) > H(k) - H(a(n-1)), where H = harmonic number. 5
11, 53, 249, 1164, 5435, 25371, 118428, 552798, 2580343, 12044484, 56221045, 262427666, 1224955522, 5717827134, 26689578960, 124581175389, 581517950673, 2714399875409, 12670230858892, 59141894115145, 276061555506087, 1288595564424512, 6014885070144844 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Suppose that x and y are positive integers and that x <=y.  Let a(1) = least k such that H(y) - H(x-1) < H(k) - H(y); let a(2) = least k such that H(a(1)) - H(y) < H(k) - H(a(1)); and for n > 2, let a(n) = least k such that greatest such H(a(n-1)) - H(a(n-2)) < H(k) - H(a(n-1)).  The increasing sequences H(a(n)) - H(a(n-1)) and a(n)/a(n-1) converge.  For what choices of (x,y) is the sequence a(n) linearly recurrent?

For A227965, (x,y) = (1,2); H(a(n)) - H(a(n-1)) approaches a limit 1.540684...  given by A227966, and a(n)/a(n-1) approaches a limit 4.6677834...  given by A227967.  It is unknown whether the sequence a(n) is linearly recurrent.

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..100

EXAMPLE

The first two values (a(1),a(2)) = (11,53) match the beginning of the following inequality chain (and partition of the harmonic numbers):  1/1 + 1/2 < 1/3 + ... + 1/11 < 1/12 + ... + 1/53 < ...

MATHEMATICA

z = 300; h[n_] := h[n] = HarmonicNumber[N[n, 500]]; x = 1; y = 2;

a[1] = Ceiling[w /. FindRoot[h[w] == 2 h[y] - h[x - 1], {w, 1}, WorkingPrecision -> 400]]; a[2] = Ceiling[w /. FindRoot[h[w] == 2 h[a[1]] - h[y], {w, a[1]}, WorkingPrecision -> 400]]; Do[s = 0; a[t] = Ceiling[w /. FindRoot[h[w] == 2 h[a[t - 1]] - h[a[t - 2]], {w, a[t - 1]}, WorkingPrecision -> 400]], {t, 3, z}];

m = Map[a, Range[z]] (* A227965 *)

t = N[Table[h[a[t]] - h[a[t - 1]], {t, 2, z, 25}], 60]

Last[RealDigits[t, 10]]  (* A227966 *)

t = N[Table[a[t]/a[t - 1], {t, 2, z, 50}], 60]

Last[RealDigits[t, 10]]  (* A227967 *)

(* A227965,  Peter J. C. Moses, Jul 12 2013*)

CROSSREFS

Cf. A224820, A224868, A227728, A227966, A227967.

Sequence in context: A207361 A093864 A139967 * A196468 A252833 A227255

Adjacent sequences:  A227962 A227963 A227964 * A227966 A227967 A227968

KEYWORD

nonn,frac,easy

AUTHOR

Clark Kimberling, Aug 01 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 29 04:57 EST 2020. Contains 331335 sequences. (Running on oeis4.)