login
A227904
Numbers k such that Sum_{j=1..k} antisigma(j) == 0 (mod sigma(k)).
0
1, 2, 39, 78, 100, 126, 434, 501, 1313, 54111, 359466, 523219, 6601441, 8034674, 54092207, 64149290, 158882288, 3016740661, 20951813922, 52815759197, 120508871819
OFFSET
1,2
COMMENTS
Tested up to k = 10^6.
a(22) > 2.1774*10^11. - Kevin P. Thompson, Jan 10 2022
EXAMPLE
Sum_{j=1..39} antisigma(j) = 9408, sigma(39) = 56 and 9408 mod 56 = 0, so 39 is a term.
MAPLE
with(numtheory); P:=proc(q) local a, n; a:=0;
for n from 3 to q do a:=a+n*(n+1)/2-sigma(n);
if (a mod sigma(n))=0 then print(n); fi; od; end: P(10^9);
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Paolo P. Lava, Oct 15 2013
EXTENSIONS
a(13)-a(17) from Donovan Johnson, Oct 15 2013
a(18)-a(21) from Kevin P. Thompson, Jan 10 2022
STATUS
approved