login
A227759
Numbers n such that A227758(n) = sigma(sigma(n)) - sigma(n) - n < 0, where sigma(n) = A000203(n) = sum of the divisors of n
2
1, 2, 4, 9, 13, 16, 18, 25, 36, 37, 43, 49, 50, 61, 64, 67, 73, 81, 97, 98, 100, 109, 121, 144, 151, 157, 163, 169, 181, 193, 211, 225, 229, 241, 242, 256, 277, 283, 289, 313, 324, 331, 337, 338, 361, 373, 397, 400, 409, 421, 433, 441, 457, 484, 487, 523, 529
OFFSET
1,2
COMMENTS
Numbers n such that A051027(n) - A000203(n) - n < 0, where A000203(n) = sum of the divisors of n , A051027(n) = A000203(A000203(n)) = sigma(sigma(n)) = sum of the divisors of the sum of the divisors of n.
Conjecture: a(n) = complement of union A000668 and A227760, where A000668 = Mersenne primes, A227760 = numbers n such that sigma(sigma(n)) - sigma(n) - n > 0.
FORMULA
A227758(a(n)) < 0.
EXAMPLE
Number 16 is in sequence because sigma(sigma(16)) - sigma(16) - 16 = 32 - 31 - 16 = -15 < 0.
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Jul 29 2013
STATUS
approved