The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A227721 Floor(1/s(n)), where s(n) = (2n+1)/(2n+2) - n*log((n+1)/n). 3
 17, 44, 83, 134, 197, 272, 359, 458, 569, 692, 827, 974, 1133, 1304, 1487, 1682, 1889, 2108, 2339, 2582, 2837, 3104, 3383, 3674, 3977, 4292, 4619, 4958, 5309, 5672, 6047, 6434, 6833, 7244, 7667, 8102, 8549, 9008, 9479, 9962, 10457, 10964, 11483, 12014, 12557 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS That s(n) > 0 for n >=1 follows from the chain 1 < log 2 < 3/4 < 2 log 3/2 < 5/6 < 3 log 4/3 < 7/8 < 4 log 5/4 < ... ; i.e., n log((n+1)/n) - (2n-1)/(2n) > 0 and (2n+1)/(2n+2) - n log((n+1)/n) > 0. For the first, closeness to 0 is indicated by A227719 and A227720, and for the second, by A227721 and a sequence which possibly equals A094159. Conjecture: the four sequences are linearly recurrent. LINKS Clark Kimberling, Table of n, a(n) for n = 1..1000 FORMULA a(n) = 2 + 9*n + 6*n^2 (conjectured). a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) (conjectured). G.f.: (-17 + 7 x - 2 x^2)/(-1 + x)^3 (conjectured). MATHEMATICA s[n_] := s[n] = (2 n + 1)/(2 n + 2) - n*Log[1 + 1/n] Table[Floor[1/s[n]], {n, 1, 100}] (* A227721 *) Table[Round[1/s[n]], {n, 1, 100}] (* conjecture: A094159 *) CROSSREFS Cf. A227719, A227720, A094159. Sequence in context: A112885 A093191 A033703 * A140155 A221752 A032698 Adjacent sequences: A227718 A227719 A227720 * A227722 A227723 A227724 KEYWORD nonn,easy AUTHOR Clark Kimberling, Jul 22 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 23 13:11 EDT 2024. Contains 371913 sequences. (Running on oeis4.)