login
A227679
T(n,k)=Number of nXk 0,1 arrays indicating 2X2 subblocks of some larger (n+1)X(k+1) binary array having an odd sum, with rows and columns of the latter in lexicographically nondecreasing order
6
2, 4, 4, 7, 16, 7, 11, 50, 50, 11, 16, 131, 283, 131, 16, 22, 301, 1343, 1343, 301, 22, 29, 625, 5434, 11971, 5434, 625, 29, 37, 1198, 19188, 90884, 90884, 19188, 1198, 37, 46, 2153, 60484, 592791, 1330361, 592791, 60484, 2153, 46, 56, 3670, 173433, 3380440
OFFSET
1,1
COMMENTS
Table starts
..2....4......7.......11..........16............22..............29
..4...16.....50......131.........301...........625............1198
..7...50....283.....1343........5434.........19188...........60484
.11..131...1343....11971.......90884........592791.........3380440
.16..301...5434....90884.....1330361......16795263.......184000783
.22..625..19188...592791....16795263.....418147052......9062032214
.29.1198..60484..3380440...184000783....9062032214....392636087774
.37.2153.173433.17161921..1773503344..172087530120..14928759496120
.46.3670.459198.78807477.15261176700.2897975481614.502146361367093
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = (1/2)*n^2 + (1/2)*n + 1
k=2: [polynomial of degree 6]
k=3: [polynomial of degree 14]
k=4: [polynomial of degree 30]
k=5: [polynomial of degree 62]
EXAMPLE
Some solutions for n=4 k=4
..0..1..0..1....0..0..0..0....0..0..0..0....0..0..0..1....1..0..1..0
..1..1..0..0....0..0..1..1....0..0..1..1....0..0..1..0....1..0..1..0
..0..1..1..1....0..0..0..0....0..1..0..1....0..1..0..1....0..0..1..0
..1..0..0..1....1..0..0..1....0..1..1..1....1..1..1..0....0..1..1..0
CROSSREFS
Column 1 is A000124
Sequence in context: A223644 A223637 A223620 * A223782 A223716 A188607
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Jul 19 2013
STATUS
approved