login
A227520
Values of n such that L(17) and N(17) are both prime, where L(k) = (n^2+n+1)*2^(2*k) + (2*n+1)*2^k + 1, N(k) = (n^2+n+1)*2^k + n.
1
61, 73, -135, -141, 255, 321, 481, -767, -837, -1065, -1443, -1481, 1579, 1611, -1689, 1711, -1761, -1865, -1943, -2547, 2577, -2753, -2831, -2981, -3209, -3243, 3445, -3543, -3735, 3909, -4041, 4219, 4471, 4549, -4587, -4791, -4833, -4853, -4875, 4891, 5071, -5259, -5379, 5421, -5673, -5921, -5979, -6215, 6529, -6689, -6773, -6897, 6915, 6943
OFFSET
1,1
COMMENTS
Computed with PARI using commands similar to those used to compute A226921.
LINKS
Vincenzo Librandi and Joerg Arndt, Table of n, a(n) for n = 1..529
Eric L. F. Roettger, A cubic extension of the Lucas functions, Thesis, Dept. of Mathematics and Statistics, Univ. of Calgary, 2009. See page 195.
KEYWORD
sign,easy
AUTHOR
Vincenzo Librandi, Jul 14 2013
STATUS
approved