

A227522


Values of n such that L(19) and N(19) are both prime, where L(k) = (n^2+n+1)*2^(2*k) + (2*n+1)*2^k + 1, N(k) = (n^2+n+1)*2^k + n.


2



123, 221, 255, 311, 487, 561, 709, 1055, 1273, 1425, 1475, 1767, 1833, 1893, 2127, 2391, 2475, 2595, 2769, 2895, 3053, 3183, 3543, 3627, 3765, 3919, 4069, 4113, 4203, 4315, 4609, 4953, 5175, 5347, 5413, 5657, 6117, 6515, 6585, 6597, 6833, 6915
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Computed with PARI using commands similar to those used to compute A226921.


LINKS

Vincenzo Librandi and Joerg Arndt, Table of n, a(n) for n = 1..421
Eric L. F. Roettger, A cubic extension of the Lucas functions, Thesis, Dept. of Mathematics and Statistics, Univ. of Calgary, 2009. See page 195.


CROSSREFS

Cf. A226921A226929, A227448, A227449, A227515A227523.
Sequence in context: A302459 A179127 A153254 * A193431 A306643 A303241
Adjacent sequences: A227519 A227520 A227521 * A227523 A227524 A227525


KEYWORD

sign,easy


AUTHOR

Vincenzo Librandi, Jul 14 2013


STATUS

approved



