login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227431
Fibonacci differences triangle, T(n,k), k<=n, where column k holds the k-th difference of A000045, read by rows.
4
1, 1, 0, 2, 1, 1, 3, 1, 0, -1, 5, 2, 1, 1, 2, 8, 3, 1, 0, -1, -3, 13, 5, 2, 1, 1, 2, 5, 21, 8, 3, 1, 0, -1, -3, -8, 34, 13, 5, 2, 1, 1, 2, 5, 13, 55, 21, 8, 3, 1, 0, -1, -3, -8, -21, 89, 34, 13, 5, 2, 1, 1, 2, 5, 13, 34, 144, 55, 21, 8, 3, 1, 0, -1, -3, -8, -21
OFFSET
1,4
COMMENTS
Consecutive columns (i.e., k = 1, 2, 3, ...) shift the Fibonacci sequence down by 2 indices.
Diagonal (n = k) produces Fibonacci numbers at increasingly negative indices for n = k > 2. See A039834.
Row sums equal A005013(n), which equals Fibonacci A000045(n), if n is even, and equals Lucas numbers A000204(n) if n is odd.
(Rows that sum to Lucas numbers have all positive values.)
FORMULA
T(n,1) = F(n) for n > 0, where F(n) = A000045(n), T(n,k) = T(n,k-1) - T(n-1,k-1).
EXAMPLE
1
1 0
2 1 1
3 1 0 -1
5 2 1 1 2
8 3 1 0 -1 -3
13 5 2 1 1 2 5
21 8 3 1 0 -1 -3 -8
34 13 5 2 1 1 2 5 13
55 21 8 3 1 0 -1 -3 -8 -21
89 34 13 5 2 1 1 2 5 13 34
MATHEMATICA
Flatten[Table[Fibonacci[Range[n, -n + 1, -2]], {n, 15}]] (* T. D. Noe, Jul 26 2013 *)
PROG
(Haskell)
a227431 n k = a227431_tabl !! (n-1) !! (k-1)
a227431_row n = a227431_tabl !! (n-1)
a227431_tabl = h [] 0 1 where
h row u v = row' : h row' v (u + v) where row' = scanl (-) v row
-- Reinhard Zumkeller, Jul 28 2013
(PARI) T(n, k)=fibonacci(n-2*k+2) \\ Charles R Greathouse IV, Jul 30 2016
CROSSREFS
KEYWORD
sign,easy,nice,tabl
AUTHOR
Richard R. Forberg, Jul 11 2013
STATUS
approved