OFFSET
1,4
COMMENTS
Consecutive columns (i.e., k = 1, 2, 3, ...) shift the Fibonacci sequence down by 2 indices.
Diagonal (n = k) produces Fibonacci numbers at increasingly negative indices for n = k > 2. See A039834.
Row sums equal A005013(n), which equals Fibonacci A000045(n), if n is even, and equals Lucas numbers A000204(n) if n is odd.
(Rows that sum to Lucas numbers have all positive values.)
LINKS
T. D. Noe, Rows n = 1..100 of triangle, flattened
FORMULA
T(n,1) = F(n) for n > 0, where F(n) = A000045(n), T(n,k) = T(n,k-1) - T(n-1,k-1).
EXAMPLE
1
1 0
2 1 1
3 1 0 -1
5 2 1 1 2
8 3 1 0 -1 -3
13 5 2 1 1 2 5
21 8 3 1 0 -1 -3 -8
34 13 5 2 1 1 2 5 13
55 21 8 3 1 0 -1 -3 -8 -21
89 34 13 5 2 1 1 2 5 13 34
MATHEMATICA
Flatten[Table[Fibonacci[Range[n, -n + 1, -2]], {n, 15}]] (* T. D. Noe, Jul 26 2013 *)
PROG
(Haskell)
a227431 n k = a227431_tabl !! (n-1) !! (k-1)
a227431_row n = a227431_tabl !! (n-1)
a227431_tabl = h [] 0 1 where
h row u v = row' : h row' v (u + v) where row' = scanl (-) v row
-- Reinhard Zumkeller, Jul 28 2013
(PARI) T(n, k)=fibonacci(n-2*k+2) \\ Charles R Greathouse IV, Jul 30 2016
CROSSREFS
KEYWORD
AUTHOR
Richard R. Forberg, Jul 11 2013
STATUS
approved