login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227401
Expansion of chi(x^6) / (chi(-x) * chi(x^3)) in powers of x which chi() is a Ramanujan theta function.
1
1, 1, 1, 1, 1, 2, 4, 5, 5, 5, 6, 9, 12, 15, 16, 17, 20, 26, 34, 40, 44, 48, 55, 68, 84, 98, 108, 118, 135, 161, 192, 221, 244, 268, 303, 354, 414, 470, 519, 571, 641, 737, 847, 954, 1052, 1156, 1291, 1465, 1664, 1861, 2048, 2248, 2496, 2807, 3158, 3511, 3855
OFFSET
0,6
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(x^6) / f(-x^1, -x^5) in powers of x where f(,) is a Ramanujan theta function.
Expansion of q^(1/12) * eta(q^2) * eta(q^3) * eta(q^12)^3 / (eta(q) * eta(q^6)^3 * eta(q^24)) in powers of q.
Euler transform of period 24 sequence [ 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, -1, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 0, ...].
a(n) ~ 11^(1/4) * exp(Pi*sqrt(11*n)/6) / (4*sqrt(6)*n^(3/4)). - Vaclav Kotesovec, Jul 11 2016
EXAMPLE
G.f. = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 4*x^6 + 5*x^7 + 5*x^8 + 5*x^9 + ...
G.f. = 1/q + q^11 + q^23 + q^35 + q^47 + 2*q^59 + 4*q^71 + 5*q^83 + 5*q^95 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ -x^6] / (QPochhammer[ x, x^6] QPochhammer[ x^5, x^6] QPochhammer[ x^6]), {x, 0, n}];
a[ n_] := SeriesCoefficient[ QPochhammer[ -x^6, x^12] QPochhammer[ -x, x] QPochhammer[ x^3, -x^3], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A)^3 / (eta(x + A) * eta(x^6 + A)^3 * eta(x^24 + A)), n))};
CROSSREFS
Sequence in context: A034214 A317749 A253415 * A131813 A083038 A061008
KEYWORD
nonn
AUTHOR
Michael Somos, Sep 20 2013
STATUS
approved