login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227115
Powers but not squares which are sum of consecutive composites less than 10^7 ordered according to the proximity of the first composite of the sum to the first composite: 4.
0
27, 10077696, 128, 32768, 8, 27, 1000, 1728, 5088448, 690807104, 27, 32, 512, 2048, 512, 6859, 4913, 243, 405224, 125, 3125, 2744, 98611128, 27000, 314432, 216, 1728, 1889568, 243, 2744, 512, 4913000
OFFSET
1,1
COMMENTS
There are other informative data for each term of the sequence. They are (b,l,k) where b is the base to an odd power, l is the number of consecutive composites added, and k indicates the k-th composite c(k) from where the sums begin: (3,4,1), (6,4151,1), (2,10,2), (2,222,2), (2,1,3), (3,3,3), (10,30,7), (12,42,7), (172,2931,7), (884,35029,9), (3,1,17), (2,1,20), (2,13,20), (2,36,22), (2,12,23), (19,79,24), (17,59,31), (3,4,41), (74,772,42), (5,2,43), (5,37,43), (14,33,44), (462,13093,46), (30,162,47), (68,668,48), (6,3,50), (12,20,53), (18,1723,56), (3,3,57), (14,28,58), (2,6,59), (170,2827,60).
EXAMPLE
We denote the n-th composite as c(n). Some of the odd powers are the sum of consecutive composites in several ways: 27 = 3^3 = c(1)+c(2)+c(3)+c(4) = c(3)+c(4)+c(5) = c(17) = 4 + 6 + 8 + 9 = 8 + 9 + 10. 243 = 3^5 = c(189) = c(90)+c(91) = c(57)+c(59)+c(59) = c(41)+c(42)+c(43)+c(44) = 121 + 122 = 80 + 81 + 82 = 58 + 60 + 62 + 63. 1000 = 10^3 is sum of 30 consecutive composites beginning with c(7) = 14. 1728 = 12^3 = Ramanujan taxicab minus 1 is sum of 42 consecutive composites beginning with c(7) = 14 and of 20 consecutive composites beginning with c(53) = 75.
PROG
(PARI) n1=10^7; v=vector(n1); i=0; for(a=2, n1, if(isprime(a), next, i++; v[i]=a)); for(b=1, 60, k=0; for(j=b, i, k=k+v[j]; if(ispower(k, , &n)&ispower(k)%2==1, print1([k, n, ispower(k), j-b+1, b], " "))))
CROSSREFS
KEYWORD
nonn,less
AUTHOR
Robin Garcia, Jul 04 2013
STATUS
approved