login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227096
Self-convolution of A013999.
1
1, 2, 5, 20, 104, 632, 4396, 34680, 307236, 3026472, 32849364, 389704800, 5017492320, 69678231552, 1038078389376, 16513758904320, 279354776803200, 5007072973075200, 94783054774919040, 1889504358498754560, 39565281716813111040, 868194780280625779200
OFFSET
0,2
LINKS
FORMULA
a(n) = sum(A013999(k)*A013999(n-k), k=0..n).
G.f.: sum(B(k)*k!*x^(k-2)*(1-x)^k, k>=2), where B(k) = sum(1/C(k,i), i=1..k-1).
a(n) ~ 2*n*n!/exp(1). - Vaclav Kotesovec, Jul 08 2013
MAPLE
a:= proc(n) option remember; `if`(n<6, [1, 2, 5, 20, 104, 632][n+1],
((3*n+10)*(n+3)*a(n-1) -(n+13)*(n+2)^2*a(n-2)
+(n+3)*(4*n^2+19*n+2)*a(n-3) -2*(n+2)*(3*n^2+6*n-4)*a(n-4)
+(4*n^3+8*n^2-12*n-4)*a(n-5) -n*(n+3)*(n-2)*a(n-6))/(2*n+4))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jul 01 2013
MATHEMATICA
f[n_] := Sum[Binomial[n-k+1, k] (-1)^k (n-k+1)!, {k, 0, Quotient[n+1, 2]}];
a[n_] := Sum[f[k] f[n-k], {k, 0, n}];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 14 2023 *)
PROG
(Maxima) f(n):=sum(binomial(n-k+1, k)*(-1)^k*(n-k+1)!, k, 0, floor((n+1)/2)); a(n):=sum(f(k)*f(n-k), k, 0, n); makelist(a(n), n, 0, 20);
CROSSREFS
Cf. A013999.
Sequence in context: A212580 A370669 A261779 * A152562 A006867 A170946
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Jul 01 2013
STATUS
approved