OFFSET
0,2
FORMULA
a(n) == 3 (mod 10) for n>0 (conjecture).
a(n) ~ 2*(2*n)! / ((sin(r)+cos(r)*sinh(r)+sin(r)*cosh(r)) * r^(2*n+1)), where r = 0.825607669071161851569946... is the root of the equation sin(r)*sinh(r) = cos(r). - Vaclav Kotesovec, Jul 13 2014
EXAMPLE
E.g.f.: A(x) = 1 + 3*x^2/2! + 53*x^4/4! + 2333*x^6/6! + 191673*x^8/8! + 25307913*x^10/10! +...
MATHEMATICA
Table[n!*SeriesCoefficient[1/(Cos[x] - Sin[x]*Sinh[x]), {x, 0, n}], {n, 0, 40, 2}] (* Vaclav Kotesovec, Jul 13 2014 *)
PROG
(PARI) {a(n)=local(X=x+x*O(x^(2*n))); (2*n)!*polcoeff(1/(cos(X) - sin(X)*sinh(X)), 2*n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 29 2013
STATUS
approved