The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A185071 E.g.f.: 1/sqrt(cos(x)*cosh(x) - sin(x)*sinh(x)), omitting the zero-valued coefficients of odd powers of x. 2
 1, 1, 11, 311, 17401, 1605121, 221150291, 42544269431, 10895006389681, 3583312720242241, 1472043913711636571, 738696511605374082551, 444643435445854346001961, 316205489853515802822759361, 262279609103378710090568706851, 250969078703002751430687050751671 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n) == 1 (mod 10). LINKS Alois P. Heinz, Table of n, a(n) for n = 0..100 FORMULA a(n) ~ 2^(2*n+1)*n^(2*n)/(sqrt(cosh(r)*sin(r)*r)*exp(2*n)*r^(2*n)), where r = 0.93755203435598... is the root of the equation cos(r)*cosh(r) = sin(r)*sinh(r). - Vaclav Kotesovec, Jun 27 2013 EXAMPLE E.g.f.: A(x) = 1 + x^2/2! + 11*x^4/4! + 311*x^6/6! + 17401*x^8/8! + ... MAPLE a:= n-> (2*n)! *coeff(series(1/sqrt(cos(x)*cosh(x)         -sin(x)*sinh(x)), x, 2*n+1), x, 2*n): seq(a(n), n=0..20);  # Alois P. Heinz, Jun 27 2013 MATHEMATICA Table[n!*SeriesCoefficient[1/Sqrt[Cos[x]*Cosh[x]-Sin[x]*Sinh[x]], {x, 0, n}] , {n, 0, 40, 2}] (* Vaclav Kotesovec, Jun 27 2013 *) PROG (PARI) {a(n)=local(X=x+x*O(x^(2*n))); (2*n)!*polcoeff(1/sqrt(cos(X)*cosh(X) - sin(X)*sinh(X)), 2*n)} for(n=0, 20, print1(a(n), ", ")) CROSSREFS Sequence in context: A100445 A193890 A317744 * A060495 A251589 A070278 Adjacent sequences:  A185068 A185069 A185070 * A185072 A185073 A185074 KEYWORD nonn AUTHOR Paul D. Hanna, Jan 22 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 22:47 EST 2020. Contains 331129 sequences. (Running on oeis4.)