login
A226812
Numbers of the form 3^j + 6^k, for j and k >= 0.
2
2, 4, 7, 9, 10, 15, 28, 33, 37, 39, 45, 63, 82, 87, 117, 217, 219, 225, 243, 244, 249, 279, 297, 459, 730, 735, 765, 945, 1297, 1299, 1305, 1323, 1377, 1539, 2025, 2188, 2193, 2223, 2403, 3483, 6562, 6567, 6597, 6777, 7777, 7779, 7785, 7803, 7857, 8019, 8505
OFFSET
1,1
COMMENTS
Conjecture: Any positive integer not among 1, 3, 5, 6, 8, 12, 27 can be written as a sum of distinct terms of the current sequence with no summand dividing another. - Zhi-Wei Sun, May 01 2023
MATHEMATICA
a = 3; b = 6; mx = 9000; Union[Flatten[Table[a^n + b^m, {m, 0, Log[b, mx]}, {n, 0, Log[a, mx - b^m]}]]]
CROSSREFS
Cf. A004050 (2^j + 3^k), A226806-A226832 (cases to 8^j + 9^k).
Sequence in context: A279934 A047541 A308496 * A185978 A351799 A120749
KEYWORD
nonn
AUTHOR
T. D. Noe, Jun 19 2013
STATUS
approved