login
A226472
Numbers n such that n^2 XOR triangular(n) is a perfect square. XOR is the bitwise logical exclusive-or operator.
0
0, 1, 6, 8, 4086, 24136, 162297, 7868054, 29792904, 22666693375
OFFSET
1,3
COMMENTS
Indices of perfect squares in A226470. No other terms below 2^35. Roots of generated squares: 0, 0, 7, 10, 2915, 29506, 149434, 6328037, 27602118, 20243443647.
EXAMPLE
8^2 XOR triangular(8) = 64 XOR 36 = 100, because 100 is a perfect square, 8 is in the sequence.
PROG
(C)
#include <stdio.h>
#include <math.h>
int main() {
for (unsigned long long a, r, n=0; n < (1ULL<<32); ++n) {
a = (n*n) ^ (n*(n+1)/2);
r = sqrt(a);
if (r*r==a) printf("%llu, ", n);
}
return 0;
}
CROSSREFS
KEYWORD
nonn,more,base
AUTHOR
Alex Ratushnyak, Jun 08 2013
STATUS
approved