login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226470
a(n) = n^2 XOR triangular(n), where XOR is the bitwise logical exclusive-or operator.
2
0, 0, 7, 15, 26, 22, 49, 45, 100, 124, 83, 59, 222, 242, 173, 153, 392, 440, 495, 471, 322, 350, 281, 773, 876, 820, 1019, 931, 646, 762, 597, 561, 1552, 1648, 1751, 1727, 1930, 2022, 1857, 1789, 1396, 1484, 1379, 1163, 1102, 994, 3197, 3273, 3480, 3496, 3391, 3847, 4082
OFFSET
0,3
FORMULA
a(n) = A000290(n) XOR A000217(n).
EXAMPLE
a(2) = 2^2 xor 2*3/2 = 4 xor 3 = 7.
MATHEMATICA
Table[BitXor[n^2, (n(n+1))/2], {n, 0, 60}] (* Harvey P. Dale, Aug 11 2017 *)
PROG
(Python)
for n in range(99):
print((n*n) ^ (n*(n+1)//2), end=", ")
CROSSREFS
Sequence in context: A260558 A154935 A012480 * A063611 A292379 A146624
KEYWORD
nonn,base
AUTHOR
Alex Ratushnyak, Jun 08 2013
STATUS
approved