The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A226194 Expansion of f(-x^1, -x^7) * f(-x^3, -x^5) in powers of x where f(, ) is Ramanujan's general theta function. 2
 1, -1, 0, -1, 1, -1, 1, -1, 0, 0, 2, 0, 1, -1, 1, -2, 0, 0, 1, -1, 0, -1, 1, 0, 1, -2, 0, -2, 1, 0, 1, 0, 1, -1, 1, 0, 1, 0, 0, -1, 3, -1, 0, -1, 0, -2, 1, 0, 1, -1, 1, 0, 1, 0, 0, -2, 0, -1, 0, -1, 2, -2, 0, -1, 0, 0, 2, -1, 1, -1, 2, 0, 0, 0, 0, -1, 1, 0, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,11 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS G. C. Greubel, Table of n, a(n) for n = 0..2500 Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of q^(-5/8) * eta(q) * eta(q^8)^2 / eta(q^2) in powers of q. Euler transform of period 8 sequence [-1, 0, -1, 0, -1, 0, -1, -2, ...]. a(n) = -I/2 * b(8*n + 5) where b() is multiplicative with b(2^e) = 0^e, b(p^e) = (-1)^(e * (p+1)/8) * (1 + (-1)^e) / 2 if p == 3 (mod 4), b(p^e) = (e+1) * I^(e * (p-1)/4) if p == 1 (mod 4). G.f.: Product_{k>0} (1 - x^(8*k))^2 / (1 + x^k). a(9*n + 2) = a(9*n + 8) = 0. a(9*n + 5) = -a(n). a(n) = (-1)^n * A053692(n). EXAMPLE G.f. = 1 - x - x^3 + x^4 - x^5 + x^6 - x^7 + 2*x^10 + x^12 - x^13 + x^14 - 2*x^15 + ... G.f. = q^5 - q^13 - q^29 + q^37 - q^45 + q^53 - q^61 + 2*q^85 + q^101 - q^109 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ QPochhammer[ q^8]^2 / QPochhammer[ -q, q], {q, 0, n}]; PROG (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^8 + A)^2 / eta(x^2 + A), n))}; (PARI) {a(n) = my(A, p, e); if( n<0, 0, n = 8*n + 5; A = factor(n); simplify( -I/2 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p%4 == 3, if( e%2, 0, (-1)^(e * (p+1) / 8)), (e+1) * I^(e * (p-1) / 4)))))}; CROSSREFS Cf. A053692, A226192. Sequence in context: A210638 A272903 A321458 * A053692 A341024 A286934 Adjacent sequences:  A226191 A226192 A226193 * A226195 A226196 A226197 KEYWORD sign AUTHOR Michael Somos, May 30 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 13:48 EDT 2021. Contains 347688 sequences. (Running on oeis4.)