This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A226194 Expansion of f(-x^1, -x^7) * f(-x^3, -x^5) in powers of x where f(, ) is Ramanujan's general theta function. 2
 1, -1, 0, -1, 1, -1, 1, -1, 0, 0, 2, 0, 1, -1, 1, -2, 0, 0, 1, -1, 0, -1, 1, 0, 1, -2, 0, -2, 1, 0, 1, 0, 1, -1, 1, 0, 1, 0, 0, -1, 3, -1, 0, -1, 0, -2, 1, 0, 1, -1, 1, 0, 1, 0, 0, -2, 0, -1, 0, -1, 2, -2, 0, -1, 0, 0, 2, -1, 1, -1, 2, 0, 0, 0, 0, -1, 1, 0, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,11 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS G. C. Greubel, Table of n, a(n) for n = 0..2500 Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of q^(-5/8) * eta(q) * eta(q^8)^2 / eta(q^2) in powers of q. Euler transform of period 8 sequence [-1, 0, -1, 0, -1, 0, -1, -2, ...]. a(n) = -I/2 * b(8*n + 5) where b() is multiplicative with b(2^e) = 0^e, b(p^e) = (-1)^(e * (p+1)/8) * (1 + (-1)^e) / 2 if p == 3 (mod 4), b(p^e) = (e+1) * I^(e * (p-1)/4) if p == 1 (mod 4). G.f.: Product_{k>0} (1 - x^(8*k))^2 / (1 + x^k). a(9*n + 2) = a(9*n + 8) = 0. a(9*n + 5) = -a(n). a(n) = (-1)^n * A053692(n). EXAMPLE G.f. = 1 - x - x^3 + x^4 - x^5 + x^6 - x^7 + 2*x^10 + x^12 - x^13 + x^14 - 2*x^15 + ... G.f. = q^5 - q^13 - q^29 + q^37 - q^45 + q^53 - q^61 + 2*q^85 + q^101 - q^109 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ QPochhammer[ q^8]^2 / QPochhammer[ -q, q], {q, 0, n}]; PROG (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^8 + A)^2 / eta(x^2 + A), n))}; (PARI) {a(n) = my(A, p, e); if( n<0, 0, n = 8*n + 5; A = factor(n); simplify( -I/2 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p%4 == 3, if( e%2, 0, (-1)^(e * (p+1) / 8)), (e+1) * I^(e * (p-1) / 4)))))}; CROSSREFS Cf. A053692, A226192. Sequence in context: A210638 A272903 A321458 * A053692 A286934 A282714 Adjacent sequences:  A226191 A226192 A226193 * A226195 A226196 A226197 KEYWORD sign AUTHOR Michael Somos, May 30 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 12:33 EST 2019. Contains 329916 sequences. (Running on oeis4.)