login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226163
Determinant of the (p_n-1)/2-by-(p_n-1)/2 matrix with (i,j)-entry being the Legendre symbol ((i^2-((p_n-1)/2)!*j)/p_n), where p_n is the n-th prime.
6
0, -1, 0, 0, -8, -72, 0, 0, -2061248, 0, -18150912, 2581719040, 0, 0, 6237406973952, 0, 311692729699401728, 0, 0, 2675112340760315428864, 0, 0, -149670892669766097645487521792, 162894623351898578070944297779200, 273248864699809403831952842162176, 0, 0, -13518055482368485085619549462056665088, 4364947372586985974930810143672643878912
OFFSET
2,5
COMMENTS
Conjecture: a(n) = 0 if and only if p_n == 3 (mod 4).
Note that for an odd prime p we have (((p-1)/2)!)^2 == (-1)^{(p+1)/2} (mod p) by Wilson's theorem. In 1961, Mordell proved that((p-1)/2)! == (-1)^{(h(-p)+1)/2} (mod p) for any prime p > 3 with p == 3 (mod 4), where h(-p) is the class number of the imaginary quadratic field Q(sqrt(-p)).
LINKS
L. J. Mordell, The congruence ((p-1)/2)! == 1 or -1 (mod p), Amer. Math. Monthly 68 (1961), 145-146.
Zhi-Wei Sun, A conjecture on Legendre symbol determinants, a message to Number Theory List, July 17, 2013.
EXAMPLE
a(2) = 0 since the Legendre symbol ((1^2-1)/3) is equal to 0.
MATHEMATICA
a[n_]:=Det[Table[JacobiSymbol[i^2-((Prime[n]-1)/2)!*j, Prime[n]], {i, 1, (Prime[n]-1)/2}, {j, 1, (Prime[n]-1)/2}]]
Table[a[n], {n, 2, 30}]
CROSSREFS
KEYWORD
sign
AUTHOR
Zhi-Wei Sun, Aug 05 2013
STATUS
approved