login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226095
Primes formed by concatenation (exponent then prime) of prime factorizations of the positive integers.
1
13, 1213, 17, 23, 2213, 113, 1217, 1223, 12113, 131, 137, 12119, 22111, 3217, 167, 173, 179, 43, 221317, 12143, 22123, 197, 1103, 1109, 4217, 22129, 17117, 211, 12161, 32117, 13147, 1327, 1151, 32119, 23117, 15131, 17123, 1163, 1213129, 13159, 1181, 1217113
OFFSET
1,1
COMMENTS
This produces primes well above the base composite, like 22111 from 44.
Entries stemming strictly from composite prime factorizations will be unique and the sequence will very likely be infinite. Of course not every prime will be encountered, and duplication will be seen across composite and prime factorization treated jointly (an example being 18 and 223 both yielding the prime 1223).
Primes in A123132. - Charles R Greathouse IV, May 28 2013
EXAMPLE
44 = 2^2 * 11^1 yields 22111, which is prime and so enters the sequence. Powers precede the prime factor.
MAPLE
select(isprime, [seq((l-> parse(cat(seq([i[2], i[1]][], i=l))))(sort(ifactors(n)[2], (x, y)-> x[1]<y[1] or x[1]=y[1] and x[2]<y[2])), n=1..300)])[]; # Alois P. Heinz, Nov 24 2017
MATHEMATICA
t = {}; Do[s = FromDigits[Flatten[IntegerDigits /@ RotateLeft /@ FactorInteger[n]]]; If[PrimeQ[s], AppendTo[t, s]], {n, 2, 200}]; t (* T. D. Noe, May 28 2013 *)
Select[FromDigits[Flatten[IntegerDigits/@Reverse/@FactorInteger[#]]]&/@ Range[2, 300], PrimeQ] (* Harvey P. Dale, Nov 24 2017 *)
PROG
(PARI) list(maxx)={
n=3; cnt=0;
while(n<=maxx,
f=factorint(n); old=0;
\\ as we concatenate, code is f{digits of each p.f.&pwr}
for (i=1, #f[, 1],
new=(10^length( Str(f[i, 1]) ) *f[i, 2] + f[i, 1]);
q=new+(10^length(Str(new)) )*old; old=q );
if(isprime(q), print("entry from", n, " ", q);
cnt++); n++;
while(isprime(n), n++);
); }
CROSSREFS
Cf. A105435 (primes which with a 1 prepended stay prime).
Sequence in context: A128897 A201265 A221390 * A220619 A178560 A091781
KEYWORD
easy,nonn,base
AUTHOR
Bill McEachen, May 26 2013
STATUS
approved