login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A225959 a(n) = sigma(2*n^3) - sigma(n^3). 3
2, 16, 80, 128, 312, 640, 800, 1024, 2186, 2496, 2928, 5120, 4760, 6400, 12480, 8192, 10440, 17488, 14480, 19968, 32000, 23424, 25440, 40960, 39062, 38080, 59048, 51200, 50520, 99840, 61568, 65536, 117120, 83520, 124800, 139904, 104120, 115840, 190400, 159744, 141288, 256000 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Here sigma(n) = A000203(n), the sum of the divisors of n.
LINKS
FORMULA
a(n) = A054785(n^3).
Logarithmic derivative of A225958.
Sum_{k=1..n} a(k) ~ c * n^4, where c = (15/44) * zeta(4) * Product_{p prime} (1 + 1/p^2 + 1/p^3) = (15/44) * A013662 * A330595 = 0.64531050605789193162... . - Amiram Eldar, Mar 17 2024
EXAMPLE
L.g.f.: L(x) = 2*x + 16*x^2/2 + 80*x^3/3 + 128*x^4/4 + 312*x^5/5 + 640*x^6/6 +...
where
exp(L(x)) = 1 + 2*x + 10*x^2 + 44*x^3 + 134*x^4 + 468*x^5 + 1524*x^6 + 4584*x^7 + 13862*x^8 +...+ A225958(n)*x^n +...
exp(-L(-x)) = 1 + 2*x - 6*x^2 + 12*x^3 + 38*x^4 - 108*x^5 + 148*x^6 + 168*x^7 +...+ A225957(n)*x^n +...
MATHEMATICA
a[n_] := DivisorSigma[1, 2*n^3] - DivisorSigma[1, n^3]; Array[a, 50] (* Amiram Eldar, Mar 17 2024 *)
PROG
(PARI) {a(n)=sigma(2*n^3)-sigma(n^3)}
for(n=1, 50, print1(a(n), ", "))
CROSSREFS
Sequence in context: A197992 A265173 A264573 * A336174 A045905 A012680
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 22 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 11:49 EDT 2024. Contains 373503 sequences. (Running on oeis4.)